a2 United States Patent

Rath et al.

US009367252B2

US 9,367,252 B2
*Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

SYSTEM AND METHOD FOR DATA
REPLICATION USING A SINGLE MASTER
FAILOVER PROTOCOL

Applicant: Amazon Technologies, Inc., Seattle, WA
us)

Inventors: Timothy Andrew Rath, Des Moines,

WA (US); Jakub Kulesza, Bellevue, WA

(US); David Alan Lutz, Renton, WA

us)

Assignee: Amazon Technologies, Inc., Reno, NV

us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/834,392

Filed: Aug. 24,2015
Prior Publication Data
US 2015/0363124 Al Dec. 17, 2015

Related U.S. Application Data

Continuation of application No. 13/352,326, filed on
Jan. 17, 2012, now Pat. No. 9,116,862.

Int. Cl.
GO6F 11/00 (2006.01)
GO6F 3/06 (2006.01)
(Continued)
U.S. CL
CPC GO6F 3/0617 (2013.01); GO6F 3/0653

(2013.01); GOGF 3/0659 (2013.01); GO6F
3/0683 (2013.01); GOGF 11/2097 (2013.01):
HO4L 67/1097 (2013.01); HO4L 67/16
(2013.01); GOG6F 11/2048 (2013.01)

client
103

Web
sorvice A
125

(58) Field of Classification Search
USPC ottt eien 714/4.11
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,261,085 A 11/1993 Lamport
5,764,877 A 6/1998 Lomet et al.
5,878,434 A 3/1999 Draper et al.
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 12/059,723, filed Mar. 31, 2008, Grant A.M.
McAlister et al.

(Continued)

Primary Examiner — Sarai Butler
(74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

A system that implements a data storage service may store
data on behalf of storage service clients. The system may
maintain data in multiple replicas of various partitions that are
stored on respective computing nodes in the system. The
system may employ a single master failover protocol, usable
when a replica attempts to become the master replica for a
replica group of which it is a member. Attempting to become
the master replica may include acquiring a lock associated
with the replica group, and gathering state information from
the other replicas in the group. The state information may
indicate whether another replica supports the attempt (in
which case it is included in a failover quorum) or stores more
recent data or metadata than the replica attempting to become
the master (in which case synchronization may be required).
If the failover quorum includes enough replicas, the replica
may become the master.

20 Claims, 37 Drawing Sheets

client
108

Web
service B
148

‘eb
service C
158

US 9,367,252 B2
Page 2

(51) Imt.ClL
GO6F 1120 (2006.01)
HO4L 29/08 (2006.01)
(56) References Cited

6,014,669
6,061,740
6,105,099

6,163,855
7,194,652
7,430,740
7,496,782
7,716,180
7,779,010
7,801,912
8,301,593
8,732,517

9,116,862
2002/0161889
2003/0014462
2003/0078946
2003/0220935
2004/0220931
2004/0243692
2005/0198359
2005/0283644
2006/0190243
2007/0124380
2007/0168336
2007/0239767
2008/0005196
2008/0063165
2008/0154980
2008/0294648
2008/0301200
2009/0119346
2009/0138531
2009/0172782
2010/0005124
2010/0106813
2010/0114976
2010/0131795

2010/0131801
2010/0205227

2010/0281027
2011/0041006

U.S. PATENT DOCUMENTS

A 1/2000 Slaughter et al.
A 5/2000 Ferguson et al.

A * 8/2000 Freitascccccoeevvrnen.

A 12/2000 Shrivastava et al.
B2 3/2007 Zhou et al.

Bl 9/2008 Molloy et al.

B1 2/2009 Kownacki

B2 5/2010 Vermeulen et al.
B2 8/2010 McGarvey

B2 9/2010 Ransil et al.

B2 10/2012 Hoffmann et al.

Bl* 5/2014 Stefani

Bl 8/2015 Rath et al.

Al 10/2002 Gamache et al.
Al 1/2003 Bennett et al.

Al 4/2003 Costello et al.
Al 11/2003 Vivian et al.

Al 11/2004 Guthridge et al.
Al 12/2004 Arnold et al.

Al 9/2005 Basani et al.

Al 12/2005 Lorch et al.

Al 8/2006 Barkai et al.

Al 5/2007 Carr et al.

Al 7/2007 Ransil et al.

Al 10/2007 Singh

Al 1/2008 Beck

Al 3/2008 Gallant

Al 6/2008 Lorenz et al.

Al 11/2008 Lin et al.

Al 12/2008 Doty et al.

Al 5/2009 Luetal.

Al 5/2009 Horii

Al 7/2009 Taglienti et al.
Al 1/2010 Wagner

Al 4/2010 Voutilainen et al.
Al 5/2010 Castellanos et al.
Al* 5/2010 Hirakawa

Al* 5/2010 Baleani
Al 8/2010 Weissman et al.

Al 112010 Duan et al.
Al 2/2011 Fowler

2011/0055156 Al 3/2011 Roberts et al.

2011/0083046 Al* 42011 Andrade GO6F 11/0793
714/47.1
2011/0099342 Al 4/2011 Ozdemir
2011/0161335 Al* 6/2011 Dash GO6F 17/30194
707/758
2012/0011394 Al* 12012 Maki ...cccoevenenee. GO6F 11/2028
714/6.3
2012/0011398 Al 1/2012 Eckhardt et al.
2012/0030508 Al* 2/2012 Vivian ... GO6F 11/2097
714/6.3

2012/0036237 Al 2/2012 Hasha et al.

2012/0042196 Al 2/2012 Aron et al.

2012/0166390 Al 6/2012 Merriman et al.

2012/0179791 Al* 7/2012 Little ..oocovvvreviiiennns GO6F 9/52
709/221

2012/0297236 Al 11/2012 Ziskind et al.

2012/0297243 Al 11/2012 Heetal.

2012/0330954 Al 12/2012 Sivasubramanian et al.

2013/0110781 Al* 5/2013 Golab GO6F 17/30581
707/638

2013/0111261 Al 5/2013 Dalton

OTHER PUBLICATIONS

U.S. Appl. No. 13/352,113, filed Jan. 17, 2012, Timothy A Rath, et al.
U.S. Appl. No. 13/352,060, filed Jan. 17, 2012, Timothy A Rath, et al.
U.S. Appl. No. 13/352,075, filed Jan. 17, 2012, Timothy A Rath, et al.
U.S. Appl. No. 13/352,334, filed Jan. 17, 2012, Timothy A Rath.
U.S. Appl. No. 13/352,097, filed Jan. 17, 2012, Timothy A Rath.
Wool, “Quorum Systems in Replicated Databases: Science or Fic-
tion?,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 21 No. 4, pp. 3-11, Dec. 1998.

U.S. Appl. No. 13/352,326, filed Jan. 17, 2012, Timothy A Rath, et al.
U.S. Appl. No. 13/174,295, filed Jun. 30, 2011, Stefano Stefani et al.
Rabinovich, Michael, Narain Gehani, and Alex Kononov. “Scalable
update propagation in epidemic replicated databases.”, Advances in
Database Technology—FEDBT’96. Springer Berlin Heidelberg,
1996.205-222. pp. 207-222, 1996.

Bhide, Anupam, et al. “An efficient scheme for providing high avail-
ability.” ACM SIGMOD Record. vol. 21. No. 2. ACM, 1992, pp.
236-245.

Kumar, Puneet. “Coping with conflicts in an optimistically replicated
file system.” Management of Replicated Data, 1990, pp. 60-64.
“Windows Azure Table,” Jai Haridas, Niranjan Nilakantan, Brad
Calder, May 2009, pp. 1-42.

“Dynamo: Amazon’s Highly Available Key-value Store,” Giuseppe
DeCandia, et al. Amazon.com, Oct. 14-17, 2007, ACM, pp. 205-220.
“Windows Azure Storage—Essential Cloud Storage Services,” Brad
Calder, Microsoft Corporation, PDC2008, pp. 1-64.

* cited by examiner

U.S. Patent Jun. 14,2016 Sheet 1 of 37 US 9,367,252 B2

100
L"“a
client client
105 105
network
115
Web Web
sarvice A service B
125 145

Web
service C
158

FIG. 1A

U.S. Patent Jun. 14,2016 Sheet 2 of 37 US 9,367,252 B2

slorage service client | storage service chient
1103 o 110n

Web services plaltform 1.3
external
front end module auto admin instance(s) L | WOTHTOW
140 150 componeant
173
& 4
¥ i
& 8
extemnal
¥ ¥ e a— Sf@r@g ¢
senvice
storage node storage node 180
instance instance
180a o i80n

FIG. 1B

U.S. Patent

Jun. 14, 2016

front end module
140

request parsing & throftiing
o
2140

authentication/melering

raquest dispalching

pariition map cache
244

message bus
238 244

dynarnic configure

FIG. 2A

sforage node instance
160

message busi dynamic configure

235 240

partifion manager
270

replication & failover

278

storage AP

280

. O

storage enging

[¢0)
<5

2t

5

o
)

FIG. 2C

Sheet 3 of 37

US 9,367,252 B2

auto admin instance
150

visibility and control

245

heat balancing

anomaly control

resource affocadion

message bus
438

dynamic configure
240

admin console

265

FIG. 2B

U.S. Patent

321a

(.-

US 9,367,252 B2

Jun. 14, 2016 Sheet 4 of 37
fable 3202 fable 320n
itemi 3218 ifem 3228
flem 3216 item 3220
item 321n item 322n
FiG. 3A
321b 321n

“magelD” =1

ate” = 20100815

-

oy

imagelD”= 2

“

“Hitle” = “flower”

ratings”"= 3, 4, 2

“imagelD” = n

‘fags” = “flowey”,
Yjasmine”, “white”

Title” = “credenza”

“date” = 20110327

“width” = 1024

“depth” = 768

“fags” = france’,
“architecture”

FIG. 3B

U.S. Patent Jun. 14,2016 Sheet 5 of 37 US 9,367,252 B2

invoke CreateTable workflow; input

paramsters include table identifier,

partition ideniifiers, and table name
410

i

update table status fo “creating”
420

" any old T
partitions exist for this
table name?

YOS e

| o
delete old partitions z
435

create pariitions for the fable {includes

selecting nodes, crealing replicas for

each parfition, and updating metadata

for the replicas in the Fartitions table)
440

i

update meladata for the table in the Nodes table
450

¥

update table status fo “aclive”
460

FIG. 4

U.S. Patent Jun. 14,2016 Sheet 6 of 37 US 9,367,252 B2

a data storage service initiates
the partitioning of a table
maintained in a non-relational data
store on behalf of a client
&1g

= mudtiple T
" items in the fable share a ",
e, 11881 KOV aHNDUTE vAIUG? ™™

o

. ¥
yes the data store divides the items
in the table info two or more
: partitions dependerit on a hash of
the data store divides the items their hash key attribute values
in the table info two or more partitions 830

dependent first on a hash of their hash

key aftribute values and then on their

respective range key attribute values
54¢

A4
the data store stores each of
the two or more parfitions on a
respective storage node
580

¥

the data sfore replicates sach of
the two or more partitions on one or
more additional sfocrage nodes
560

FIG. 5

U.S. Patent Jun. 14,2016 Sheet 7 of 37 US 9,367,252 B2

regeive a query request that is directed
to one or morg ftems inafable ina
non-refational database and that
specifies a com;g;pgite primary key
37

ki
parse the query request o
determine the hash and range
values specified in the request
020

¥

direct query 1o @ parfition comprising
an initial target of the guery, dependent
on the specified hash and range;
retrieve farget(s)
630

" gl targets e
in specified range are ™
"o, TOUNT 011 the partition? ===

L)

'

direct query fo one or more other
partitions comprising targeis
of the query; refrieve fargel(s)
&

pEAYAYS

93

refurn a response that includes
attribute value(s) of one or more fems :
in the table from the partition - :
860 P refurn a response that includes atfribute
T value(s) of one or more items in the
table from the two or more parlitions
670

4

FIG. 6

U.S. Patent Jun. 14,2016 Sheet 8 of 37 US 9,367,252 B2

node(s)
714

node-type replicals)
718 744

node-id A noda-id partifion(s)
ofher partiion-id {4 pariition-id

FIG. 7

U.S. Patent

Jun. 14, 2016 Sheet 9 of 37

receive request o move a replica of a partition
810

L

create destination replica
820

L

whife a replica of the source partition is live,
copy the fable data from the source replica
fo the destinafion replica using file copy
mechanism or other physical copy mechanism
830

l

perform catch-up operation to reconcile any
changes {o replica dala nol yet reflected in copy
844

L

direct fraffic away from copied replica
and foward designation replica
85

FiG. 8

US 9,367,252 B2

U.S. Patent Jun. 14,2016 Sheet 10 of 37 US 9,367,252 B2

begin copying replica data from
current physical storage locations {o
corresponding physical destination locations
91¢

r

during physical copying operation, log write
operations targeting the replica being copied
920

8 interval has pasg(}(j? (((((((((((((((((((((((((((((((((((

apply logged write operations o
the source replica (the replica being copied)
940

o copy
< operation complete?
o, 950 o

Yes

continue copying replica dala
from current physical sforage locations o
corresponding physical destination locafions
860

'

inr calch-up operafion, apply any logged write
operations that are not already refleclted in the
destination replica to the desfination repfica
870

FiG. 9

U.S. Patent

Jun. 14, 2016 Sheet 11 of 37

US 9,367,252 B2

receive a request fo split a partition
1010

L

while original replicas of the source partifion are five,
initiate creation of one or more destination replicas

1620

L

copy the source partition fo the destinalion replicas
using a physical copy mechanism, bring up-to-dale

1030

L

propagate a special “write” {or “spfit’} command
fo divide the replicas into new replica groups
and designate sach replica group as handiing
a regpeactive portion of the split partition
104G

k4

glect one or more masters for
gach of the new replica groups
1050

L

each replica group handies requests directed
to a respective portion of the original partition
1060

l

perform logical reclamation of unused
portions of split pariition replicas
107G

FIG. 10

U.S. Patent

Jun. 14, 2016 Sheet 12 of 37

US 9,367,252 B2

detect faifure or fault on node
hosting a pariition replica
1110

L

elect new masiter for replica group, if necessary
1120

L

while a source pariition replica is live, initiate
creation of replacement pariition replica
1130

L

coOpy source partition to replacement
partition using a physical copy mechanism
1140

L

perform catch-up operation fo reconcile any
changes fo partition data not yet reflected in copy
1150

FIG. 11

US 9,367,252 B2

Sheet 13 of 37

Jun. 14, 2016

U.S. Patent

AN |
{Ajuo Asowsus 1) (48Ip U0 {(sjqeinp winionb) (BLUSLIS O] UBRLUM}
3L LNENs 4 gaHsnI+4 A gIi1Noo X J30ddY
{weais Boy) « = : = M = w p= |
ﬁk Ficl A TA oLzL 8Ggt 8021

0071 K o SIQEIND winuonb si Boy 3

I sigrinp Ayenoi st Boj p= 3

3 o ssasboud w voneonda A YOz L

AVA

US 9,367,252 B2

Sheet 14 of 37

Jun. 14, 2016

U.S. Patent

&L DA
m meh
[Boy Aelde] - 06EF TS
3 Boy Aidde
M@Q NL\%EOQN:\. ErANA i€l o~ [Boi A 7]
‘ 5
5751 SO, gigy - 160 ynoo] mnw%h
sIqeIng
BLEL ~_fpoyoeas wnionb]
9 >
[eFAN} \N@ON ysnyl AN SIOYSTIA,
¢ o s
dzer PN e A0 s
oiey 100 Em%& mwmh
jsenbas spppdn
sigad igpeeiu
< 'Y
vmmw 084

ﬂ\«

QoeL

US 9,367,252 B2

Sheet 15 of 37

Jun. 14, 2016

U.S. Patent

. A4
pL Ol 2 o
{iopsenbai
O} 8SUOCSES BjRLIGYR)
9781 _~[BtiByOS ma Ajddde] mm.wm
g1 w@ Jaxjiom Bop-Aidde
L » fonenb]
r oRensol”
= 4 BT 03 BsUCHEaI JeUondo)
¢ 5 gorl (J6odde
0T ¢
2V 77 mww& A d.h
QUUOs Opiry
foeysniy tinionbf~_ 0SEL
i &
(Jpousny 8E¥1L wmw.h
@ME <DBHSHI, {Jpaysni-f6o;f
p7p) o ISP OF mm@ wm.;
% = saom Bofysny
E%.uqmuﬂww\s @Vﬂum. AL AL V M.@D@Sﬁ%
2801 {)Boysny Zitl
FEpi ~INST UbISsE]
N %
Omwgns 0EFL ¥ 3
(Jerepdn gzpp | % p {ioisanbal
ajepdn oLyl L)
poudas ensis sebpusyy Boy Jabeuepy sabeueyy sbueysy ,v{,
P « 18onboy Lebrueyy sippdn Abng)
80¥L Q0rL & ¢ o0t
¥OFL Al 4

US 9,367,252 B2

Sheet 16 of 37

Jun. 14, 2016

U.S. Patent

GL D
m
wmumw [prisyas o Aidde] ™ gggy
£ LN
sauom Bop-Aidde
fensnb] ¢ o ALY
7861 : o 2261

(6o 1Adde ¢ c PLGH

(w0 ¢ <
SO,
0Cs1
Py oo
{Jpaysny Zigl
gigi = N
o 5 HOUSHA,
{paysm-bo;
QEGL s 18
b [ysip ,QN ysoil 9501
Feyiom BopRysny
{ensnbj ¢ - resi
8251 : = 9154

(Boysny : 0iG1

{Ipusdde ¢ e
ousddy,
Jebeuepy ebuey) sobeusyy By isbeupyy 1sonboy IBISB
ﬁ\« Hebeuepy epppdey Asng o 2 -
Y 9051 P0G L Z051

004 ROSGL

U.S. Patent Jun. 14,2016 Sheet 17 of 37 US 9,367,252 B2

write request is received from a client and is routed
fo the master replica of the appropriate replica group
1600

:

the master in the replica group ships a log record
for a write operation to all members of the
replica group as an “append” message
1610

.

a slave in the replica group receives the log record,
appends it to its log, and returns “flushed” message
1620

o write
W Quorumisreached?

{10

master considers fog committed; returns
response o client; ships "commit” message
o the other replicas in the group
1640

¥
master and other replicas in the group apply the write
indicated in the log record to the data they manage
1650

FIG. 16

U.S. Patent

Jun. 14, 2016

& master in a replica group
receives a request for a read
operation, ships request to afl
members of i‘fi{fy 59;3!:‘03 group

171

.

a stave in the replica group
receives the request and
refums requested data
1715

" read

Sheet 18 of 37

<" quorim is reached?

¥

| 0

master refums response
1725

“timeout
reached?

master refurns error message
1735

FiG. 17A

US 9,367,252 B2

U.S. Patent Jun. 14,2016 Sheet 19 of 37 US 9,367,252 B2

a request for a read operation is
received from a client
1740

read R
sistent read? e

AAAAAAAAA < is acon

request is routed fo the
master replica for the
appropriate replica group
1750

l

the master replica for the
replica group receives the
request and returns the
requested data to the client
1758

the request is routed fo
any replica in the
appropriate replica group
1760

¥

the replica receives the
request and refums the
requested data to the client
1765

FIG. 178

U.S. Patent Jun. 14,2016 Sheet 20 of 37 US 9,367,252 B2

a replica in a replica group initiates altempt io
become the master for the group
1810

¥

the replica acquires the external lock associated
with the group and/or the partition i managss
1820

.

the replica gathers state information from
another replica in the replica group
1830

= the other ™_
" replica supporis this e
Ty, (Mastership atlempt? ="

10

the other replica is added o failover quorum
1850

o failover
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA quorum is met?
R 1860

replica fetches any missing fail
of the log within replicas in the quorum;
caiches up lo tail and replicates it
1870

'

the replica writes first log record of
new spoch; when durable, commits tail
1880

¥

the replica assumes mastership for replica group
1880

FIG. 18

U.S. Patent Jun. 14, 2016

Sheet 21 of 37

one or more replicas in a replica group
express interast in an extemal fock
designated for the replica group
ig1¢

)

a replica in the replica group aftempls
{o acquire the external lock
1820

e extemai T
g iork manager or ser vice™

no

<o ! i‘dm‘é fock to the iephcc} 2, -
e, 1830

lock manager or Service assigns unique
fock generation 1D
1940

re,oiioa no

< becomes ma %fer? -

failover process complets
1960

FiG. 18

¥

replica releases lock
1870

US 9,367,252 B2

U.S. Patent Jun. 14,2016 Sheet 22 of 37 US 9,367,252 B2

a replica atfernpiing to become
master begins gathering state from
other members of the group
2018

¥

the replica quernies a peer for its latest
flushed and committed fog records,
and its membership version
2015

Ye5 " knows of a newer e 110
oo rembersiip version 2.~

o e T

pear sl hosts _
oo thereplica?
e 2060

the replica atternpls
fo cafch up fo the newer
membership change
2025

e atCh-Up ™
successful?

< Cthe

L~ peerhasseena
o greater ook value? ="
. 2055

replica
abandons

a5 atfornpt
4 2075

{10

“"replica is stilf a™
member of the

the peer is courted
int the faflover quorum
2060

., L group?

i yes

failover
< guorum is met? i
. 2065

the replica re-starts
state gathering with
new membershi
2040

¥ confinue failover process
3
replica abandons attempt; 2070
stops hosting replica
2045

FiG. 20

U.S. Patent Jun. 14, 2016 Sheet 23 of 37

replica atfempting o assurne mastersiip
beging catoh-up to any missing tail of the log
2110

US 9,367,252 B2

E‘a
FORE:

- am)ther repilra o,
~in the quorm has a icw .
record with the hijhest i(;uf\

> repi:ca has a ioq reaord

“with the highest sequence vaiue ~ 10

A among those with the same e
bfghegt icci{ value? e

41? ¥

replica atfempling fo assume mastership
fetches tail of the log from the other replica
2140

i

replica afternpling to assume mastership affemplts
fo catch-up to tail of the log from the other replica
215G

CO!?ﬁiC' B
l daz‘ected causing repi:cd 5
oo, iog fo be sm,aped?

replicate taif of the log to all nodes in group,
verify minimum required durabifity
2170

FIG. 21

< repiicas in quorum? ? ™

“more

N0 missing taif
2180

U.S. Patent

¥

Jun. 14, 2016 Sheet 24 of 37 US 9,367,252 B2

a replica acting as master for a repiica
group increments an indication of a
rmembership version for the replica group
2210

L

the replica acting as master ships a
membership change log record to the
other members of the replica group as a
metadata write, meladats includes
ncremented membership version
222¢

e master e
T TRCRIVES INTICAtIoN ",
< that membership change -
s is durable? =

¥

master $ends commit message
for membership change o
other replicas in group
2235

T master e,

" receives indication ™
that a iafer wiite is
durable?

2245

master sends commit \
message for later write o |
fo other replicas in group ﬁ

membership change not commiited;
discovered during subsequent failover
2250

P
5
3

s

membership change 8
considerad cormmitied
2260

A
membership change is
applied by aff replicas
in the group
2270

FIG. 22

U.S. Patent

Jun. 14, 2016 Sheet 25 of 37

US 9,367,252 B2

y

k

a replica atfernpiing to become master
for a replica group querias a peer for is
{atest flushed and committed log recorgds,
and its membership version
2310

mfom ai:m -~

“ndicates peer knows of a ne

. Fewermembe rship
e 291D

Tyes
:

B
L

3

the replica afternpts to catch up
to the newer membearship change
kriown to the peer
2320

—Fotected and repi;cas

<o logis snipped before newer
e, membersh;u a,!'zanqe? 5

::‘?3’ ™

No

the replica attempls to caich
up from farther behind
2330

' gazhered FOm ™
‘ enough
o - p 2ers)

yec

1o catof-up operation{s)
required or catch-up
operafion{s) complete
237G

<. ISsuccessful?

replica abandons afternpt
o become mastor
234

:epiica;ssz‘:i:a e
S~~gember of the gn oup 2 o

10

replica abandons attempt;
stops hosting replica
2350}

the repiica re~sfart$ state
gathering with new membership
2360

FiG. 23

U.S. Patent Jun. 14, 2016

Sheet 26 of 37

US 9,367,252 B2

or more replicas in the replice group
2410

the replica acting as magter of a replica in
the group inifiates the addition of one

¥

2420

the replica acling as master ships one or
more membership change lfog records fo the

other members of the replica groun, sach
indicating the addition of a replica in the group

%

the
~ membership change(s} are ™

AaAuuwhh sufficiently caught up
RN 2430

durable and enough replicas are -

the replice acting as master ships a

other members of the expandad

2440

rmembership change log record o the

replica group indicaling that the group
is 10 spfit info two new replica groups

é

replica groups aftempts o become
master of the new replica group

a replica in at least one of the two new

2450

- mp(~

110

successful?

¥

an alternpt fo becorme master of the
expanded replica group may be successful;
if so, any subsequent aftempt to become
master of one of the new groups will fail
2470

any subsequent atternpt
o become master of the expanded
replica group will be unsuccessiul
2480

FIG. 24

U.S. Patent Jun. 14,2016 Sheet 27 of 37 US 9,367,252 B2

the master for the expanded replica group
shins a membership change log record to
the other membaears of the expanded
replica group indicating that the group is {o
spiit info two new replica groups
2510

.

the masfer continues to hold a
fock for the expanded group unti
the spiit log record is appended
2520

.

the masler gives up mastership
of the expanded replica group
and then releases the lock
2530

!

a replica in the expanded replica
group aftermpis to become master
of the expanded repfica group
2540

successiul?

. L

i

yes the replica atlermpting fo become
masier syncs to spiit log record,
abandons ifs attempl, and recognizes
its rmermnbership in one of the new groups
2570

an attempt fo becomne master of one
of the new replica groups will be
unsuccessiul; split will fail and the split
fog record will be snipped away from
any replica that appendesd i
2560

FIG. 25

U.S. Patent Jun. 14, 2016 Sheet 28 of 37

a slave replica in a replica group receives a
iog record o be appended o #s log stream
and metadata relafed fo the fog record
2610

o
¥
the slave replica compares the metadsta
refated to the received log record with
retadata refated to one or more previously
appended log records
26715

indicates log should
be snipped?

T 2620

o

~ cam,oar:sa A
mdfcaz‘es rec e:ved e YOS
fog record is next iog iecord ‘

US 9,367,252 B2

2625

fog stream of the slave
.1 replica is snipped &t
4 point of detected corflict

R - fO be o

" COMpAanson .
indicales receivedlog o YES

¥

append log record

2635

S JECOM should be drrwwd P

{30

e compamson
~Tidicates received Iog recorT e ¥€S

1

drop log record
2645

shou:d be cached for fufuro?
2600

invalid state
2660

Y

cache log record
for future
2655

FIiG,

26

U.S. Patent

Jun. 14, 2016 Sheet 29 of 37

a replica in a replica group initiates an
attempt fo become the master for the group
2710

:

the replica acquires the external lock associated
with the group and/or the partition it manages
2720

:

the replica gathers state information from
another replica in the replica group
2730

T e —n
—0ther replica Supports this ™ we.__
o [11ES1ETSHID GHEMPE? e

the other replica is added fo faillover quorum
2750

B e
N0 e _ : :
quorum is met?

non-supporing replicas are dropped from group
2765

1

replica fefches any missing tail of the log within
replicas in the guorum {(now the modified replica
group); catches up to tail and replicates it
2770

!

the replica writes first log record of
niew epoch; when durable, commits tail
2780

1

the replica assumes mastership
for modified replica group
2790

US 9,367,252 B2

FIG. 27

U.S. Patent Jun. 14,2016 Sheet 30 of 37 US 9,367,252 B2

one or more replicas in a replica group express
interast in assuming rofe of master for the replica
group to an external service or manager
2810

)
ki
external service or manager selects an interested
replica to assume the role of master, grants lock for
the group to the masier candidate, assigns highast
known credentials fo the master candidate
2820

e S — the master candidale again

s s interest
pandidate succeeds in T s ?f(p r gs§e i 7£?f83i m)

building quorum? el asSuUming rofe of master

A for the replica group

2835

master candidate assumes role of master for the
replica group, beging servicing writes and
consistent reads directed to the replica group
2840

FiG. 28

U.S. Patent

Jun. 14, 2016 Sheet 31 of 37 US 9,367,252 B2

master candidate receives lsase from external service/
manager, assumes roje of master for its replica group
28140

:

master services writes and consistent
reads directed fo the replica group
2920

é

after pre-determined fime period, master sends
hiwartbeal message o external service/manager
2830

yes master receives new

or renewed lease from exfemai
Semce/manager?

ﬁO

master foses lease, no longer services writes
and congisient reads directed to the replica group
2880

FIG. 29

U.S. Patent Jun. 14, 2016

Sheet 32 of 37

US 9,367,252 B2

service/manager, persisis

a given replica receives credentials from external

assumes role of master for its replica group
2010

credentials on local node,

5

¥

master services writes directed fo the replica group,
which includes alfermpling fo oblain write quorum
3020

%

¥

master loses communication with exiernal service/manager

o

master continues servicing writes directed to the replica
group, which includes attempting fo obtain write guorum
3040

write is
committed in
the data slore

8

.

""" write
guorum mef for a
replicated write? e

o

wrile I8 riot commitied in the data sfore
3060

no " replica

yes

“another
has sesn highs
credentials? P
e BLQ "

the given replica gives up mastership,
no longer services wries directed fo the replica group
3080

FIG. 30

U.S. Patent Jun. 14,2016 Sheet 33 of 37 US 9,367,252 B2

a given replica receives credentials from external
service/manager, persists credentials on focal node,
assumes role of master for its replica group
3110

i

master services writes directed fo the replica group,
which includes atfempting to obtain write quorum
31240

i

heartbeat between gimﬁn replica and
external service/manager faifs
313¢

:

rmaster continues servicing writes directed o the replica
group, which includes afternpting to obtain write quorum
3140

P fepiica aSSUMES

the master role for the repiica

R group or is aftempting o assume
g z‘he master roie?

10

the given replica refrains from servicing subsequent
writes directed to the replica group
3160

:

only the new master services subisequent
writes directed to the replica group
3170

FIG. 31

U.S. Patent Jun. 14,2016 Sheet 34 of 37 US 9,367,252 B2

a given replica receives credentials from external
service/manager, persists credentials on local node,
assumes role of master for is replica group
32140

:

master sends a write indicating a lease fo the rest of the
replica group, aftempts fo obtain write quorum
3220

e it —
e Quorum achieved? =

10

master services consistent reads directed to the
replica group, and services writes {(commitling
ther in the data store if the write quorum (s achieved)
3240

:

affer a pre-determined fime period, master wriles
next lease message (o rest of replica group
3253

WIS
quorum achieved within ™
_ thelease period? ="

0o

YOS

master refrains from servicing subsequent
consistent reads directed o the replica group
3270

FIG. 32

U.S. Patent Jun. 14,2016 Sheet 35 of 37 US 9,367,252 B2

a given replica receives credentials from external
service/manager, persists credentials on local node,
assumes rofe of master for ifs replica group
3310

:

master sends a write indicaling a lease fo the rest of the
replica group, atlempls to oblain write quorum
3320

e grie
. Quorum achisved?

yes|

ne

master services consistent reads directed to the
replica group, and services writes {(committing
them in the data sfore if the write quorum is achieved)}
3340

“replica assuming master role
. forthe replica group? e
R Ry

{10

Tlease has expired?
3360

given replica continues servicing given replica refrains from servicing

subsequent consistent reads subsequent consistent reads
directed to the replica group directed fo the replica group
33743 3380

FIG. 33

U.S. Patent Jun. 14,2016 Sheet 36 of 37 US 9,367,252 B2

a given replica receives credentials from external
service/manager, persists credentials on local node,
assumes role of master for its replica group
3410

¥

masfer sends a wrile indicating a lease o the
rest of the replica group, obtains write quorum
3420

:

master services congistent reads directed o the
replica group, and services wiiltes {commitling
them in the data store if the write guorum is achisved)
343¢

¥

ancther replica aftempts fo assume mastership of the
replica group, oblains quorum for attempt
3440

¥

the other replica sends a write indicaling a second fease fo
the rest of the repiica group, oblains write guorim
3454

[Ty
L

_ yes

" previous fease has expired?
e 3480

¥ ¥

given replica refrains from servicing
subsequent consisient reads
3470

given replica continues servicing
subseguent consistent reads
directed to the replica group
3465

¥
the other replica beging servicing
consistent reads
3480

FIG. 34

U.S. Patent Jun. 14,2016 Sheet 37 of 37 US 9,367,252 B2

computing node 3500

Processor Processor ProcCessor
3510a 35106 e 35100

Y A

¥ ¥

{0 interface

3530
3 8
¥ ¥ ¥
memory network ; P
3520 inforface | | "Havicai
3540 3550
program data
instructions store
3525 35358

¥
tofrom
communication

devices, external
storage devices,

inputfoutput devices

andfor other
computing devices

FIG. 35

US 9,367,252 B2

1
SYSTEM AND METHOD FOR DATA
REPLICATION USING A SINGLE MASTER
FAILOVER PROTOCOL

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/352,326, filed Jan. 17, 2012, now U.S. Pat.
No. 9,116,862, which is hereby incorporated by reference
herein in its entirety.

BACKGROUND

Several leading technology organizations are investing in
building technologies that sell “software-as-a-service”. Such
services provide access to shared storage (e.g., database sys-
tems) and/or computing resources to clients, or subscribers.
Within multi-tier e-commerce systems, different resources
may be allocated to subscribers and/or their applications from
whole machines, to CPU, to memory, to network bandwidth,
and to I/O capacity.

Database systems managing large amounts of data on
behalf of users may distribute and/or replicate that data across
two or more machines, often in different locations, for any of
a number of reasons, including security issues, disaster pre-
vention and recovery issues, data locality and availability
issues, etc. These machines may be configured in any number
of ways, including as a shared resource pool.

Interaction between client applications and database serv-
ers typically includes read operations (read-only queries),
write operations (to store data), and update operations that
can be conceptualized using a read-modify-write workflow.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram illustrating one embodiment of
a system that provides various Web-based services to clients.

FIG. 1B is a block diagram illustrating one embodiment of
a system architecture that is configured to implement a web
services-based data storage service.

FIGS. 2A-2C are block diagrams illustrating various com-
ponents of a Web services platform, according to one embodi-
ment.

FIGS. 3A and 3B are block diagrams illustrating the stor-
ing of data as items in a plurality of tables, according to one
embodiment.

FIG. 4 is a flow diagram illustrating one embodiment of a
workflow for creating a table.

FIG. 5 is a flow diagram illustrating one embodiment of a
method for partitioning a table maintained in a non-relational
data store.

FIG. 6 is a flow diagram illustrating another embodiment
of'a method for performing a query.

FIG. 7 is a block diagram illustrating a portion of a data
model for a system that provides data storage services,
according to one embodiment.

FIG. 8 is a flow diagram illustrating one embodiment of a
method for moving a replica of a partition of a table being
maintained by a data storage service on behalf of a storage
service client while the partition is “live”.

FIG. 9 is a flow diagram illustrating one embodiment of a
method for copying a replica using a physical copy mecha-
nism.

FIG. 10 is a flow diagram illustrating one embodiment of a
method for splitting a partition of a table being maintained by
a data storage service in response to a request to do so.

FIG. 11 is a flow diagram illustrating one embodiment of a
method for moving a partition of a table being maintained by
a data storage service in response to detecting an anomaly.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12 illustrates various states in a log sequence while
undergoing a replication process, according to one embodi-
ment.

FIG. 13 illustrates a commit flow for a log replication
mechanism, according to one embodiment.

FIG. 14 illustrates a data replication flow from the perspec-
tive of a master replica for a replica group, according to one
embodiment.

FIG. 15 illustrates a data replication flow from the perspec-
tive of a slave replica in a replica group, according to one
embodiment.

FIG. 16 is a flow diagram illustrating one embodiment of a
method for replicating a write operation in a data storage
system.

FIGS. 17A and 17B are flow diagrams illustrating different
embodiments of a method for performing a read operation in
a data storage system.

FIG. 18 is a flow diagram illustrating one embodiment of a
method for performing a replication failover process in a data
storage system.

FIG. 19 is a flow diagram illustrating one embodiment of a
method for acquiring an external lock for a replica group.

FIG. 20 is a flow diagram illustrating one embodiment of a
method for filling out a failover quorum.

FIG. 21 is a flow diagram illustrating one embodiment of a
method for performing a catch-up operation on a log stream
tail.

FIG. 22 is a flow diagram illustrating one embodiment of a
method for performing a replica group membership change.

FIG. 23 is a flow diagram illustrating one embodiment of a
method for synchronizing up to a replica group membership
change during failover.

FIG. 24 is a flow diagram illustrating one embodiment of a
method for splitting a replicated partition.

FIG. 25 is a flow diagram illustrating one embodiment of a
method for releasing mastership of a partition when it is split.

FIG. 26 is a flow diagram illustrating one embodiment of a
method for detecting and resolving log conflicts in a data
storage system.

FIG. 27 is a flow diagram illustrating another embodiment
of'a method for filling out a failover quorum.

FIG. 28 is a flow diagram illustrating one embodiment of a
method for employing an external service or manager to
select a master replica for a replica group.

FIG. 29 is a flow diagram illustrating one embodiment of a
method for employing a heartbeat mechanism between an
external service or manager and a master replica for a replica
group.

FIG. 30 is a flow diagram illustrating one embodiment of a
method for continuing to service write operations when an
external service or manager is unavailable.

FIG. 31 is a flow diagram illustrating another embodiment
of'a method for continuing to service write operations when
an external service or manager is unavailable.

FIG. 32 is a flow diagram illustrating one embodiment of a
method for employing a series oflocal leases to determine the
replica authorized to service consistent read operations.

FIG. 33 is a flow diagram illustrating one embodiment of a
method for determining the replica authorized to service con-
sistent read operations when mastership of a replica group
changes.

FIG. 34 is a flow diagram illustrating another embodiment
of'a method for determining the replica authorized to service
consistent read operations when mastership ofa replica group
changes.

US 9,367,252 B2

3

FIG. 35 is a block diagram illustrating a computing node
that may be suitable for implementation of a data storage
service, according to various embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that the embodiments
are not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not intended to limit embodiments to the
particular form disclosed, but on the contrary, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

The systems and methods described herein may be
employed in various combinations and in various embodi-
ments to implement a Web-based service that provides data
storage services to storage service clients (e.g., user, subscrib-
ers, or client applications that access the data storage service
on behalf of users or subscribers). The service may in some
embodiments support the seamless scaling of tables that are
maintained on behalf of clients in a non-relational data store,
e.g., a non-relational database. The service may provide a
high level of durability and availability through replication, in
some embodiments.

In some embodiments, the service may support automatic
live repartitioning of data in response to the detection of
various anomalies (e.g., failure or fault conditions, hot spots,
or increases in table size and/or service request throughput),
and/or explicit (e.g., pro-active and/or subscriber-initiated)
live repartitioning of data to support planned or anticipated
table size and/or throughput increases. In other words, the
service may in some embodiments initiate the re-sizing (scal-
ing) and/or repartitioning of a table in response to receiving
one or more requests to store, retrieve, modify, or delete items
in the scalable table.

The service described herein may in various embodiments
support a flexible schema, a plurality of available consistency
models, a variety of service level and/or business model
options, multiple indexing options, and/or multiple query
types. In some embodiments, storage service clients (e.g.,
users, subscribers or client applications) may interact with the
service through a Web service interface using a relatively
small (and relatively simple) set of APIs, such that clients of
the service are largely relieved from the burden of database
administration. The service may exhibit low latency in ser-
vicing requests. Unlike in some prior data storage services,
the service may offer predictable performance at a low cost,
while supporting multi-tenancy and automatic heat manage-
ment.

In various embodiments, the data storage service described
herein may provide an application programming interface
(API) that includes support for some or all of the following
operations on the data in a table maintained by the service on
behalf of a storage service client: put (or store) an item, get (or
retrieve) one or more items having a specified primary key,
delete an item, update the attributes in a single item, query for
items using an index, and scan (e.g., list items) over the whole
table, optionally filtering the items returned. The amount of

20

25

30

40

45

4

work required to satisfy service requests that specify these
operations may vary depending on the particular operation
specified and/or the amount of data that is accessed and/or
transferred between the storage system and the client in order
to satisfy the request.

In some embodiments, the service (and/or the underlying
system that implements the service) may support a strong
consistency model, in addition to supporting eventually con-
sistent read operations. In some embodiments, service
requests made via the APl may include an indication of one or
more user preferences, such as a preferred consistency model,
a preferred service request throughput level, or a service
request throughput level for which a guarantee is requested.
In other embodiments, some or all of these user preferences
may be specified when a table is created, or may be client-
specific, account-specific, specific to various table types, or
specified by system-wide default values, rather than being
specified on a per-request basis. The APl may support
extreme scaling and/or more predictable performance than
that provided by prior data storage systems and services.

In some embodiments, the service (and/or the underlying
system) may impose an upper bound on the size of an indi-
vidual item, e.g., to allow the service to store the entire con-
tents of an item in a single partition in the underlying data
storage system. This may, in turn, facilitate performing
atomic updates to an item without dramatically reducing
throughput, and may make it easier to maintain item contents
in a stable working set. In other words, limiting the size of an
individual item may facilitate both strong consistency and
high performance in the system, in some embodiments.

In various embodiments, systems described herein may
store data in replicated partitions on multiple storage nodes
(which may be located in multiple data centers) and may
implement a single master failover protocol. In some embodi-
ments, membership in various replica groups may be adjusted
through replicated changes, and membership and other
updates in the system may be synchronized by synchronizing
over a quorum of replicas in one or more data centers at
failover time using a replicated quorum version. In some
embodiments, a mechanism for splitting a partition may uti-
lize failover quorum synchronization, external master locks,
and/or various methods for detecting and resolving log con-
flicts, including log snipping (e.g., deleting log records that
are on invalid branches). The systems described herein may
implement a fault-tolerant log shipping based replication
mechanism that includes such log conflict detection and reso-
Iution. In some embodiments, log branching may be avoided
through post-failover rejoins.

In some embodiments, a data storage system may employ
an external service or manager (e.g., an external lock service
orlock manager) to select a master replica for a replica group.
The master replica may employ a quorum based mechanism
for performing replicated write operations that are directed to
the replica group (or a corresponding data partition stored by
the replica group), and a local lease mechanism for determin-
ing the replica authorized to perform consistent reads directed
to the replica group (or corresponding data partition), even
when the external service/manager is unavailable. The master
replica may propagate local leases to replica group members
asreplicated writes. If another replica assumes mastership for
the replica group, it may not begin servicing consistent read
operations that are directed to the replica group until the lease
period for a current local lease expires.

Various techniques described herein may be employed in
local or remote computing systems, including systems that
provide services to users (e.g., subscribers) over the Internet
or over other public or private networks, such as virtual pri-

US 9,367,252 B2

5

vate networks and connections to services in a virtual private
cloud (VPC) environment. FIG. 1A illustrates a block dia-
gram of a system that provides various Web-based services to
clients, according to one embodiment. In this example, sys-
tem 100 includes one or more clients 105. In this example, the
clients 105 may be configured to interact with a Web server
135 via a communication network 115.

As illustrated in this example, the Web server 135 may be
configured to process requests from clients 105 for various
services, such as Web service A (125), Web service B (145),
and Web service C (155), and to return results to the clients
105. Each of the web services may provide clients with one or
more of: computational resources, database services, data
storage services (e.g., maintaining data in one or more tables
on behalf of a client), or any other types of services or shared
resources.

One embodiment of a system architecture that is config-
ured to implement a Web services-based data storage service
such as that described herein is illustrated in FIG. 1B. It is
noted that where one or more instances of a given component
may exist, reference to that component herein below may be
made in either the singular or the plural. However, usage of
either form is not intended to preclude the other. In various
embodiments, the components illustrated in FIG. 1B may be
implemented directly within computer hardware, as instruc-
tions directly or indirectly executable by computer hardware
(e.g., amicroprocessor or computer system), or using a com-
bination of these techniques. For example, the components of
FIG. 1B may be implemented by a distributed system includ-
ing a number of computing nodes (or simply, nodes), such as
the computer node embodiment illustrated in FIG. 35 and
discussed below. In various embodiments, the functionality
of a given storage service system component may be imple-
mented by a particular computing node or may be distributed
across several computing nodes. In some embodiments, a
given computing node may implement the functionality of
more than one storage service system component.

Generally speaking, storage service clients 110a-110#
may encompass any type of client configurable to submit web
services requests to Web services platform 130 via network
120. For example, a given storage service client 110 may
include a suitable version of a web browser, or a plug-in
module or other type of code module configured to execute as
an extension to or within an execution environment provided
by a web browser to provide storage service clients (e.g.,
client applications, users, and/or subscribers) access to the
data storage services provided by Web services platform 130.
Alternatively, a storage service client 110 may encompass an
application such as a database application, media application,
office application or any other application that may make use
of persistent storage resources. In some embodiments, such
an application may include sufficient protocol support (e.g.,
for a suitable version of Hypertext Transfer Protocol (HTTP))
for generating and processing web services requests without
necessarily implementing full browser support for all types of
web-based data. That is, storage service client 110 may be an
application configured to interact directly with Web services
platform 130. In various embodiments, storage service client
110 may be configured to generate web services requests
according to a Representational State Transfer (REST)-style
web services architecture, a document- or message-based
web services architecture, or another suitable web services
architecture.

In some embodiments, storage service client 110 may be
configured to provide access to web services-based storage to
other applications in a manner that is transparent to those
applications. For example, storage service client 110 may be

20

25

40

45

6

configured to integrate with an operating system or file sys-
tem to provide storage in accordance with a suitable variant of
the storage model described herein. However, the operating
system or file system may present a different storage interface
to applications, such as a conventional file system hierarchy
of files, directories and/or folders. In such an embodiment,
applications may not need to be modified to make use of the
storage system service model described herein. Instead, the
details of interfacing to Web services platform 130 may be
coordinated by storage service client 110 and the operating
system or file system on behalf of applications executing
within the operating system environment.

Storage service clients 110 may convey web services
requests to and receive responses from Web services platform
130 via network 120. In various embodiments, network 120
may encompass any suitable combination of networking
hardware and protocols necessary to establish web-based
communications between clients 110 and platform 130. For
example, network 120 may generally encompass the various
telecommunications networks and service providers that col-
lectively implement the Internet. Network 120 may also
include private networks such as local area networks (LANs)
or wide area networks (WANSs) as well as public or private
wireless networks. For example, both a given client 110 and
Web services platform 130 may be respectively provisioned
within enterprises having their own internal networks. In such
an embodiment, network 120 may include the hardware (e.g.,
modems, routers, switches, load balancers, proxy servers,
etc.) and software (e.g., protocol stacks, accounting software,
firewall/security software, etc.) necessary to establish a net-
working link between given client 110 and the Internet as well
as between the Internet and Web services platform 130. It is
noted that in some embodiments, storage service clients 110
may communicate with Web services platform 130 using a
private network rather than the public Internet. For example,
clients 110 may be provisioned within the same enterprise as
the data storage service (and/or the underlying system)
described herein. In such a case, clients 110 may communi-
cate with platform 130 entirely through a private network 120
(e.g., a LAN or WAN that may use Internet-based communi-
cation protocols but which is not publicly accessible).

Generally speaking, Web services platform 130 may be
configured to implement one or more service endpoints con-
figured to receive and process web services requests, such as
requests to access tables maintained on behalf of clients/users
by a data storage service, and/or the items and attributes
stored in those tables. For example, Web services platform
130 may include hardware and/or software configured to
implement various service endpoints and to properly receive
and process HT'TP-based web services requests directed to
those endpoints. In one embodiment, Web services platform
130 may be implemented as a server system configured to
receive web services requests from clients 110 and to forward
them to various components that collectively implement a
data storage system for processing. In other embodiments,
Web services platform 130 may be configured as a number of
distinct systems (e.g., in a cluster topology) implementing
load balancing and other request management features con-
figured to dynamically manage large-scale web services
request processing loads.

As illustrated in FIG. 1B, Web services platform 130 may
include a front end module 140 (which may be configured to
receive, authenticate, parse, throttle and/or dispatch service
requests, among other things), one or more administrative
components, or auto admin instances, 150 (which may be
configured to provide a variety of visibility and/or control
functions, as described in more detail herein), and a plurality

US 9,367,252 B2

7

of storage node instances (shown as 160a-160%), each of
which may maintain and manage one or more tables on behalf
of clients/users or on behalf of the data storage service (and its
underlying system) itself. Some of the functionality provided
by each of these types of components is described in more
detail herein, according to various embodiments.

In various embodiments, Web services platform 130 may
be configured to support different types of web services
requests. For example, in some embodiments, platform 130
may be configured to implement a particular web services
application programming interface (API) that supports a vari-
ety of operations on tables that are maintained and managed
on behalf of clients/users by the data storage service system
(and/or data stored in those tables). Examples of the opera-
tions supported by such an API are described in more detail
herein.

In addition to functioning as an addressable endpoint for
clients’ web services requests, in some embodiments Web
services platform 130 may implement various client manage-
ment features. For example, platform 130 may coordinate the
metering and accounting of client usage of web services,
including storage resources, such as by tracking the identities
of requesting clients 110, the number and/or frequency of
client requests, the size of tables and/or items stored or
retrieved on behalf of clients 110, overall storage bandwidth
used by clients 110, class of storage requested by clients 110,
and/or any other measurable client usage parameter. Platform
130 may also implement financial accounting and billing
systems, or may maintain a database of usage data that may be
queried and processed by external systems for reporting and
billing of client usage activity. In some embodiments, plat-
form 130 may include a lock manager and/or a bootstrap
configuration (not shown).

In various embodiments, a data storage service may be
implemented on one or more computing nodes that are con-
figured to perform the functionality described herein. In some
embodiments, the service may be implemented by a Web
services platform (such as Web services platform 130 in FIG.
1B) that is made up of multiple computing nodes, each of
which may perform one or more of the functions described
herein. Various collections of the computing nodes may be
configured to provide the functionality of an auto-admin clus-
ter, a cluster of resources dedicated to the data storage service,
and a collection of external resources (which may be shared
with other Web services or applications, in some embodi-
ments).

In some embodiments, the external resources with which
the system interacts to provide the functionality described
herein may include an external workflow component, illus-
trated in FIG. 1B as external workflow component 170. Exter-
nal workflow component 170 may provide a framework
through which other components interact with the external
workflow system. In some embodiments, Web services plat-
form 130 may include an access API built on top of that
framework (not shown). This interface may allow the system
to implement APIs suitable for the usage patterns expected to
be experienced by the data storage service. In some embodi-
ments, components or modules of the system that use external
workflow component 170 may include these interfaces rather
than interfacing directly to the interfaces provided by external
workflow component 170. In some embodiments, the Web
services platform 130 may rely on one or more external
resources, such as an external storage service 180, and/or
other external (and in some cases shared) external resources,
in addition to external workflow component 170. In some
embodiments, external workflow component 170 may be

10

15

20

25

30

35

40

45

50

55

60

65

8

used to perform distributed operations, such as those that
extend beyond a particular partition replication group.

FIGS. 2A-2C illustrate various elements or modules that
may be included in each of the types of components of Web
services platform 130, according to one embodiment. As
illustrated in FIG. 2A, front end module 140 may include one
or more modules configured to perform parsing and/or throt-
tling of service requests (shown as 210), authentication and/
or metering of service requests (shown as 215), dispatching
service requests (shown as 225), and/or maintaining a parti-
tion map cache (shown as 230). In addition to these compo-
nent-specific modules, front end module 140 may include
components that are common to multiple types of computing
nodes that collectively implement Web services platform 130,
such as a message bus (shown as 235) and/or a dynamic
configuration module (shown as 240). In other embodiments,
more, fewer, or different elements may be included in front
end module 140, or any of the elements illustrated as being
included in front end module 140 may be included in another
component of Web services platform 130 or in a component
configured to interact with Web services platform 130 to
provide the data storage services described herein.

As illustrated in FIG. 2B, auto admin instance 150 may
include one or more modules configured to provide visibility
and control to system administrators (shown as 245), or to
perform heat balancing (shown as 250), and/or anomaly con-
trol (shown as 255), resource allocation (shown as 260). Auto
admin instance 150 may also include an admin console 265,
through which system administrators may interact with the
data storage service (and/or the underlying system). In some
embodiments, admin console 265 may be the primary point of
visibility and control for the data storage service (e.g., for
configuration or reconfiguration by system administrators).
For example, admin console 265 may be implemented as a
relatively thin client that provides display and control func-
tionally to system administrators and/or other privileged
users, and through which system status indicators, metadata,
and/or operating parameters may be observed and/orupdated.
In addition to these component-specific modules, auto admin
instance 150 may also include components that are common
to the different types of computing nodes that collectively
implement Web services platform 130, such as a message bus
(shown as 235) and/or a dynamic configuration module
(shown as 240). In other embodiments, more, fewer, or dif-
ferent elements may be included in auto admin instance 150,
or any of the elements illustrated as being included in auto
admin instance 150 may be included in another component of
Web services platform 130 or in a component configured to
interact with Web services platform 130 to provide the data
storage services described herein.

As illustrated in FIG. 2C, storage node instance 160 may
include one or more modules configured to provide partition
management (shown as 270), to implement replication and
failover processes (shown as 275), and/or to provide an appli-
cation programming interface (API) to underlying storage
(shown as 280). As illustrated in this example, each storage
node instance 160 may include a storage engine 285, which
may be configured to maintain (i.e. to store and manage) one
or more tables (and associated table data) in storage 280
(which in some embodiments may be a non-relational data-
base) on behalf of one or more clients/users. In addition to
these component-specific modules, storage node instance
160 may include components that are common to the different
types of computing nodes that collectively implement Web
services platform 130, such as a message bus (shown as 235)
and/or a dynamic configuration module (shown as 240). In
other embodiments, more, fewer, or different elements may

US 9,367,252 B2

9

be included in storage node instance 160, or any of the ele-
ments illustrated as being included in storage node instance
160 may be included in another component of Web services
platform 130 or in a component configured to interact with
Web services platform 130 to provide the data storage ser-
vices described herein.

The systems underlying the data storage service described
herein may store data on behalf of storage service clients
(e.g., client applications, users, and/or subscribers) in tables
containing items that have one or more attributes. In some
embodiments, the data storage service may present clients/
users with a data model in which each table maintained on
behalf of a client/user contains one or more items, and each
item includes a collection of attributes. The attributes of an
item may be a collection of name-value pairs, in any order. In
some embodiments, each attribute in an item may have a
name, a type, and a value. Some attributes may be single
valued, such that the attribute name is mapped to a single
value, while others may be multi-value, such that the attribute
name is mapped to two or more values. In some embodi-
ments, the name of an attribute may always be a string, but its
value may be a string, number, string set, or number set. The
following are all examples of attributes: “ImagelD™=1,
“Title”="“flower”, “Tags”={“flower”, “jasmine”, “white”},
“Ratings”={3, 4, 2}. The items may be managed by assigning
each item a primary key value (which may include one or
more attribute values), and this primary key value may also be
used to uniquely identify the item. In some embodiments, a
large number of attributes may be defined across the items in
a table, but each item may contain a sparse set of these
attributes (with the particular attributes specified for one item
being unrelated to the attributes of another item in the same
table), and all of the attributes may be optional except for the
primary key attribute(s). In other words, unlike in traditional
databases, the tables maintained by the data storage service
(and the underlying storage system) may have no pre-defined
schema other than their reliance on the primary key. Note that
in some embodiments, if an attribute is included in an item, its
value cannot be null or empty (e.g., attribute names and
values cannot be empty strings), and, and within a single item,
the names of its attributes may be unique.

In some embodiments, the systems described herein may
employ a somewhat limited indexing and/or query model in
order to provide massive (i.e. virtually unlimited) scaling,
predictability, and simplicity for users/subscribers or client
applications. For example, in some embodiments, data may
be indexed and partitioned (e.g., partitioned in the underlying
database) by a primary key only. In such embodiments, the
primary key to be used for indexing data in a user table may
be specified by the user at the time that the table is created on
the user’s behalf. Thereafter, the partitioning of the user’s
data may be handled by the system, and abstracted from the
user. In some embodiments, the primary key used for index-
ing data may consist of a single attribute hash key. In other
embodiments, the primary key used for indexing and/or par-
titioning data may be a composite key comprising a hash key
component and another component, sometimes referred to
herein as a range key component. In various embodiments,
queries may be supported against indexed attributes, and a
full table scan function may be provided (e.g., to support
troubleshooting). In some embodiments, users may define
secondary indexes for a table based on one or more attributes
other than those of the primary key, and then may query for
items using the indexes they have defined. For example, in
some embodiments the system may support the creation of
creating secondary indexes on-the-fly (e.g., using a createln-
dex API), and these secondary indexes may scale automati-

10

15

20

25

30

35

40

45

50

55

60

10

cally based on storage requirements (e.g., increasing or
decreasing data volume) and/or read/write traffic. In some
embodiments, such secondary indexes may be asynchro-
nously updated as items in the table are updated.

Invarious embodiments, the service (and/or the underlying
system) may enforce pre-determined size limits on table
names, items, attribute values, primary key values, and/or
attribute names. For example, in some embodiments, the total
size of all the attribute names and values in an item (i.e. the
row size) may be limited.

FIGS. 3A and 3B illustrate the storing of data in a plurality
oftables, according to one embodiment. As illustrated in FIG.
3 A and described above, each of a plurality of tables (shown
as tables 3204-320%) may store a plurality of items. In the
illustrated example, table 3204 stores items 321a-321#, and
table 320x stores items 322a-322n. As illustrated in FIG. 3B,
each of the items stored in a table may include a plurality of
attributes, and each of the attributes may include an attribute
name and a scalar or settype value. In this example, item 321a
(stored in table 320q) includes a numeric “imagelD” attribute
whose value is 1, a numeric “date” attribute whose value is
20100915, a sting attribute named “title” whose value is
“flower”, and a string attribute named “tags” whose value is
the set containing the strings “flower”, “jasmine”, and
“white”. In this example, item 3215 (which is also stored in
table 320a) includes a numeric “imagelD” attribute whose
value is 2, a numeric attribute named “ratings” whose value is
the set containing the numeric values 3, 4, and 2, a string
attribute named “‘title” whose value is “credenza”, a numeric
“width” attribute whose value is 1024, and a numeric “depth”
attribute whose value is 768. In this example, item 321z
(which is also stored in table 320a) includes a numeric
“imagelD” attribute whose value is n, a numeric “date”
attribute whose value is 20110327, and a string attribute
named “tags” whose value is the set containing the strings
“france” and “architecture”. Note that even though items
321a, 3215, and 321x are all stored in the same table (table
320aq), they do not all include the same set of attributes.
Instead, each item includes a sparse set of attributes from
among all the attributes that have been specified for the col-
lection of items stored in table 320a. In some embodiments,
tables such as those described herein may be used to store and
manage system metadata in addition to user data. In various
embodiments, the tables maintained by the systems described
herein may not have fixed schemas. As such, items may not
include placeholders (i.e. empty elements) for attributes that
are not included therein, and attributes (and their values) may
be added to one or more items without having to add them to
all other items.

In some embodiments, a table maintained by the data stor-
age service on behalf of a client/user may have a primary key
that identifies its items. The primary key may be defined over
one attribute (and may be single valued, as described above)
or over several attributes (i.e. it may be a composite primary
key, as described above), in various embodiments. The key
attributes may be immutable, may have a fixed type, and may
be mandatory for every item, as they uniquely identify an item
within a table. In some embodiments, the primary key is the
only part of the table that is indexed, and the index type may
be specified when a table is created. For example, when a
table of items is created, an attribute may be designated as the
primary key attributes for the table (or two attributes may be
designated for a composite primary key). All items in the table
must include the attribute(s) designated for the primary key
and the data storage service (and/or underlying system) may
ensure that the value (or combination of values) for those
attribute names is unique for each item in the table. For

US 9,367,252 B2

11

example, if an attempt is made to add a new item that has the
same primary key value as an existing item, the new item may
replace the existing item in the table.

As noted above, the data storage service (and/or the under-
lying system) may create an index based on the primary key.
The type of index may be dependent on the whether the table
uses a simple primary key or a composite primary key. For
example, the data storage service may index the primary key
either as a hash index or a hash-and-range index, as follows:

Hash—A hash may be a string or a number. Simple pri-
mary keys may have one index value: a hash index
(which may be a string or a number).

Range—A range may be a string or a number. A range may
allow table items to be sorted so that data queries can
refine results based on the range. Composite primary
keys may contain two values for the index: a hash index
(sometimes referred to herein as the hash key value) and
arange index (sometimes referred to herein as the range
key value).

A simple primary key may be sufficient for data collection
and infrequent scanning of table data (e.g., using the scan API
described below). A composite primary key may allow table
data to be organized more precisely, and may allow the use of
a Query API (such as that described below) for more efficient
dataretrieval. The following address table (Table 1) illustrates
the use of a single attribute as the primary key to uniquely
identify each item in the table.

TABLE 1

uses a simple primary key (string)

Primary Key Other Attributes

UserID = Jennifer street = 100 Pine, city = Seattle,
state = WA

UserID = Bob street = 24 Freemont Ave,
zip =95112

UserID = Harold street = 20104 N. 47 St., suite = 35,

city = Columbus, state = OH

In this example, the primary key, an attribute called Use-
rID, is required in every item and its type (“string”) is fixed for
every item. However, each item may also include any com-
bination of additional attributes. The data storage system may
in some embodiments be configured to ensure that the value
ot UserlD is unique for each item in the table. As noted above,
in some embodiments, attribute values cannot be null or
empty. In such embodiments, an attribute does not exist in the
table until/unless it has a value associated with it.

The data storage service described herein (and/or the
underlying system) may provide an application programming
interface (API) for requesting various operations targeting
tables, items, and/or attributes maintained on behalf of stor-
age service clients. In some embodiments, the service (and/or
the underlying system) may provide both control plane APIs
and data plane APIs. The control plane APIs provided by the
data storage service (and/or the underlying system) may be
used to manipulate table-level entities, such as tables and
indexes. These APIs may be called relatively infrequently
(when compared to data plane APIs). In some embodiments,
the control plane APIs provided by the service may be used to
create tables, delete tables, and/or describe tables. In some
embodiments, control plane APIs that perform updates to
table-level entries may invoke asynchronous workflows to
perform a requested operation. Methods that request
“description” information (e.g., via a describeTables API)
may simply return the current known state of the tables main-

20

30

35

40

45

65

12

tained by the service on behalf of a client/user. The data plane
APIs provided by the data storage service (and/or the under-
lying system) may be used to perform item-level operations,
such as storing, deleting, retrieving, and/or updating items
and/or their attributes, or performing index-based search-type
operations across multiple items in a table, such as queries
and scans.

The APIs provided by the service described herein may
support request and response parameters encoded in one or
more industry-standard or proprietary data exchange formats,
in different embodiments. For example, in various embodi-
ments, requests and responses may adhere to a human-read-
able (e.g., text-based) data interchange standard, (e.g., Java-
Script Object Notation, or JSON), or may be represented
using a binary encoding (which, in some cases, may be more
compact than a text-based representation). In various
embodiments, the system may supply default values (e.g.,
system-wide, user-specific, or account-specific default val-
ues) for one or more of the input parameters of the APIs
described herein.

As noted above, the control plane APIs supported by the
service may include APIs that perform updates on tables (e.g.,
a CreateTable API and/or a DeleteTable API). In various
embodiments, these APIs may invoke asynchronous work-
flows to perform the requested operation. In addition, the
service may support methods that return the current known
state (e.g., a DescribeTables API). In some embodiments, a
common use model may be for a client to request an action
(e.g., using a CreateTable API), and then to poll on its comple-
tion via the corresponding description API (e.g., Describe-
Tables).

Invarious embodiments, a CreateTable APl may be used to
create a table having a specified primary index (i.e. a primary
key). In some embodiments, in response to receiving a
request to create a table on behalf of a storage service client
via this API, the service may trigger (and/or the underlying
system implementing the service may invoke) an asynchro-
nous CreateTable workflow that returns immediately (i.e.
without waiting for the workflow to be completed). In such
embodiments, the success of the workflow may be subse-
quently determined by checking the status of the table via a
DescribeTables API. For example, each table being managed
by the service on behalf of a client/user may be in one of the
following table states, and an indication of the state of each
table may be returned in a response to a DescribeTables
request:

Creating—in which the table is being created

Active—in which the table exists

Deleting—in which the table is being deleted

In some embodiments, in response to receiving a request to
create a table on behalf of a storage service client/user (e.g.,
using a CreateTable API), the data storage service (and/or the
underlying system) may in some embodiments generate
metadata to be associated with the table and invoke an asyn-
chronous CreateTable workflow to create the table. In some
embodiments, there may be multiple tables storing and/or
maintaining metadata associated with table creation, and one
or more of these tables may be updated with when a new table
is created. For example, the system may maintain metadata in
any or all of the following types of tables, or may maintain
metadata in other types and numbers of tables, in various
embodiments:

Tables Table: This table may maintain a list of every table
in the system, along with the current state of the table
(e.g., Creating, Active, Deleting, etc). The primary key
for this table may in some embodiments include a Sub-
scriberld attribute (which may be used to identify the

US 9,367,252 B2

13

user on whose behalf the table will be maintained) and a
TableName attribute (which may specify the name of the
table that will be created). When an entry is created for
the new table, the table status may be set to “Creation
Pending”, which may indicate that the table has been
accepted for creation, but that a workflow has not yet
been invoked to create the table.

Subscribers Table: This table may maintain a count of the
total number of tables being maintained on behalf of a
single client (i.e. user/subscriber or client application),
and may also indicate how many of them are in each of
the states Active, Creating, and/or Deleting. The primary
key for this table may in some embodiments include a
Subscriberld attribute, as described above. In some
embodiments, this table may be treated as a secondary
index to the Tables table. The count of the total number
of tables and/or the count of the number of tables in the
Creating state may be incremented in response to the
invocation of a CreateTable workflow.

Partitions Table: This table may maintain a list of all par-
titions for a particular table, and may indicate their loca-
tions. The primary key for this table may in some
embodiments include a Tableld attribute and a Parti-
tionld attribute.

Nodes Table: This table may maintain a list of nodes, and
may indicate the partitions that are hosted on each of
them. The primary key for this table may in some
embodiments include a Nodeld attribute. In some
embodiments, this table may be treated as a secondary
index to the Partitions table.

As previously noted, a system that is configured to imple-
ment the data storage service described herein may rely on
one or more workflows that are executed using an external
workflow service. FIG. 4 illustrates one embodiment of such
a workflow for creating a table. As illustrated at 410, the
method may include invoking the CreateTable Workflow
(e.g., inresponse to a request to create a table, and subsequent
to generating metadata for the new table). As illustrated in this
example, in some embodiments, the table name, table iden-
tifier, and/or partition identifiers may all be passed to the
CreateTable workflow as inputs to that process. Note that this
(and/or any other service requests described herein) may
include an input parameter identifying a particular subscriber,
such as an accountID parameter. In such embodiments, the
value of this input parameter may be passed to any workflows
invoked in response to receiving the service request (e.g., the
CreateTable workflow).

In some embodiments, a CreateTable workflow may allo-
cate one or more partitions for a new table, create two or more
replicas each for the partitions, and update the appropriate
metadata in response to creating the table. One embodiment
of such a workflow is illustrated by the flow diagram in FIG.
4. The workflow may be intended to be self-healing, in some
embodiments. In such embodiments, it the process fails
before completion, the whole workflow may be rerun one or
more times until it succeeds. For example, each of the opera-
tions illustrated in FIG. 4 may be retried again and again in
response to a failure. Note that in this example, it is assumed
that the workflow is invoked only after determining that no
active table exists that has the specified table name.

As illustrated in this example, the workflow may include
updating the status of the table to “Creating” to reflect the fact
that a workflow is currently working to create the table, as in
420. In some embodiments, the table status may be atomi-
cally updated to “Creating”. In such embodiments, if multiple
workflows attempt to perform this same table creation opera-
tion, only one will succeed, thus allowing the system to avoid

20

25

30

40

45

55

60

14

a race condition, in this case. The workflow may also include
determining whether any old partitions exist that include the
table name specified for the new table, as in 430. For example,
if a creation operation specifying this table name has been
attempted (and failed) in the past, there may be remnant
partitions remaining in the system that should be deleted
before proceeding with the rest of the CreateTable workflow.
In some embodiments, the workflow may include querying
metadata (e.g., the Tables table) for any partitions associated
with this table name. For example, there may be remnants of
aprevious failed attempt to create a table with this table name
in the system, including metadata for the table in one or more
metadata tables. For each partition found, there may be mul-
tiple replicas, and each of these replicas may be physically
deleted from the storage nodes on which they reside, as in
435.

If no partitions associated with the specified table name are
found (e.g., if this table creation operation has not been pre-
viously attempted and failed), shown as the negative exit from
430, or once such remnants have been deleted, the workflow
may create one or more partitions for the new table, as in 440.
As previously described, in some embodiments, the number
of partitions created may be based on user input, historical
data, and/or system-wide, client-specific, or application-spe-
cific defaults. As illustrated in FIG. 4, creating partitions for
the new table may include selecting nodes on which to store
multiple replicas of each of the partitions, creating the mul-
tiple replicas, and updating the partition metadata (e.g.,
updating the Partitions table to include the newly created
replicas and to indicate their locations). In some embodi-
ments, selecting the nodes on which to store the replicas may
include querying metadata to discover healthy nodes on
which replicas can be stored, and allocating replicas to vari-
ous ones of the healthy nodes using any of a variety of suitable
allocation algorithms. In some embodiments, the system may
support two or more flexible and/or pluggable allocation
algorithms, including, but not limited to, selecting the nodes
that have the most available storage space, selecting the nodes
experiencing the lightest workload (e.g., the nodes receiving
the fewest service requests), or selecting nodes at random
(which may minimize a herding effect in which all new par-
titions go to the most lightly loaded nodes).

As illustrated in FIG. 4, the CreateTable workflow may
include updating node related metadata for the newly created
table (e.g., in the Nodes table), as in 450. For example, the
workflow may include reading all of the node locations of the
newly created replicas from the Partitions table (which was
updated in 440), and adding each of the newly created replicas
to the appropriate entries of the Nodes table. Once the table’s
partitions (and their replicas) have been created, and the
appropriate metadata has been updated to reflect the creation
of the new table, the workflow may include updating the
status of the newly created table to “Active”, as in 460. In
some embodiments, updating the status of the newly created
table to “Active” may include decrementing a count of the
number of tables that are in the Creating state in the Subscrib-
ers table described above.

As noted above, in some embodiments, if any of the opera-
tions illustrated in FIG. 4 fail, they may be retried up to a
pre-determined maximum number of attempts. For example,
in one embodiment, any CreateTable workflow step that is
unsuccessful may be retried up to ten times, and may employ
an exponential back-off between attempts. In some embodi-
ments, if the workflow step is not successfully completed
after the maximum number of attempts, the state of the table
being created may be reset to Creation Pending to indicate
that no workflow is currently working on creating the table. In

US 9,367,252 B2

15

such cases, the system may or may not perform cleanup of any
residual replicas created during the unsuccessful attempts.
For example, in some embodiments, this cleanup may be left
for a subsequent CreateTable workflow. In some embodi-
ments, a sweeper workflow may run periodically (e.g., once
every 30 minutes), and may scan the Tables table to determine
if there are any tables currently in state Creation Pending. If
so0, and if the state of this table has not been updated since the
last time the Tables table was scanned by the sweeper work-
flow, the sweeper workflow may assume that the creation of
this table failed, and may invoke a new CreateTable workflow
in an attempt to create the table.

In various embodiments, a DeleteTable API may be used to
delete a table and all of its indexes. In some embodiments, if
a table that is the target of a DeleteTable API is in a Creating
state when the request to delete to that table is received on
behalf of a storage service client, the service may return an
indication of an error (e.g., a 400 “ResourcelnUse” error
indication). If the table is in an Active state when the request
is received, the service may trigger (and/or the underlying
system implementing the service may invoke) an asynchro-
nous DeleteTable workflow that returns immediately (i.e.
without waiting for the workflow to be completed). In such
embodiments, the success of the workflow may be subse-
quently determined by checking the status of the table via a
DescribeTables API. In various embodiments, a Describe-
Tables API may be used to enumerate (e.g., list) information
about tables belonging to a given storage service client. For
example, in response to receiving a request on behalf of a user
to describe tables belonging to that user, the data storage
system may return primary key information and/or the status
of any tables specified in the request or (if none are specified)
all tables that belong to that user. If the indication of the state
of the table that is returned in a response to a DescribeTables
request is “Deleting” then the delete operation may be in
progress. In some embodiments, no error indication would be
returned in this case. Once the delete process is complete, the
response to a DescribeTables request may no longer include
an entry for the deleted table.

Asnoted above, the data storage service (and/or underlying
system) described herein may provide various data plane
APIs for performing item-level operations, such as a Putltem
API, a Getltem (or Getltems) API, a Deleteltem API, and/or
an Updateltem API, as well as one or more index-based
seek/traversal operations across multiple items in a table,
such as a Query API and/or a Scan API.

In some embodiments, a Putltem API may be used to insert
anew (single) item in a table. In some embodiments, this API
may be used to perform a conditional put operation. For
example, it may be used to insert an item in a table if it does
notalready exist in that table (according to the specified value
of'the primary key), or to replace an existing single item in a
table if it has certain attribute values (e.g., a specified primary
key). More specifically, in some embodiments this API may
be used to completely replace all of the attributes of an exist-
ing item (except the primary key) with new attributes to create
a “new” item. In such embodiments, the data storage system
may guarantee that this replacement operation is performed
atomically. In other words, the system may perform the
replacement operation in a way that guarantees that the item
is observable only with all of its new attributes or with all of
its previous attributes, and is not observable in an interim state
(e.g., with a mix of previous and new attributes). In some
embodiments, the Putltem API may be an idempotent API if
a conditional put operation is not specified. In other words, a
request made using a non-conditional form of the Putltem

30

40

45

50

55

16

API may insert a specified new item in a table exactly once,
even if it is called multiple times with the same input param-
eter values.

In various embodiments, a Deleteltem API may be used to
delete a single item in a table, where the item is identified by
its primary key. In some embodiments, this API may be used
to perform a conditional delete operation. For example, it may
beused to delete an item if it exists, orif it has certain attribute
values (e.g., particular attribute values other than the specified
primary key). In some embodiments, the Deleteltem AP may
be an idempotent API if a conditional put operation is not
specified. In other words, a request made using a non-condi-
tional form of the Deleteltem API may cause the system to
delete a specified new item in a table exactly once, even if it is
called multiple times with the same input parameter values. In
these and other embodiments, attempting to delete a non-
existent item may not result in an error condition, and may not
cause an error indication to be returned.

In various embodiments, a Getltem or Getltems API may
be used to retrieve one or more items (i.e. to return one or
more attributes of those item), given their primary keys. In
some embodiments, the number of items that can be retrieved
in response to a single Getltems request may be limited and/or
the items retrieved must all be stored in the same table. For
example, in one embodiment, attributes for a maximum of
eight items may be returned in response to a single Getltems
request. In some embodiments, multiple items may be
retrieved from a table in parallel, which may minimize
latency. The data storage service (and/or the underlying sys-
tem) may support projection and/or consistent reads (without
a latency penalty), in various embodiments. In some embodi-
ments, the system may support an eventual consistency model
by default, which may result in higher throughput for servic-
ing requests. In some embodiments in which multiple items
are requested in a single Getltems request, items that do not
exist in the targeted table will not be returned. In this case,
there may or may not be any error messages returned to
indicate that one or more of the requested items were not
returned.

In various embodiments, an Updateltem API may be pro-
vided by the data storage service (and/or the underlying sys-
tem). This API may be used to insert an item if it does not
already exist, or to manipulate an existing item at the attribute
level (e.g., to modify the values of one or more of its
attributes). For example, updating an item may include insert-
ing, replacing, and/or deleting various attributes of an exist-
ing item. In some embodiments, updating an item may
include atomically incrementing or decrementing the value of
an attribute having a number type. While the Putltem API
described above may be used to replace all of the attribute
values of an existing item, the Updateltem API described
herein may provide a more granular replacement operation.
In other words, this API may be used to modify a subset of the
attribute values of an existing item, and/or to modify the set of
attributes that are defined for an existing item.

In various embodiments, an Updateltem API provided by
the data storage service (and/or the underlying system) may
perform a conditional update. In such embodiments, this API
may be used to conditionally insert an item (e.g., to create an
item if it does not already exist), or to conditionally replace
(i.e. update) an item (e.g., only if its attributes match any
specified expected values). Updating an item may include
inserting, updating, and/or deleting various attributes of an
existing item. In some embodiments, the data storage system
may optionally return the old attribute values for an item that
is replaced/updated using this API.

US 9,367,252 B2

17

As previously noted, in embodiments in which the primary
key is a simple key, the item in a table being maintained on
behalf of a storage service client may partitioned using a hash
of the primary key value of each of the items, while in
embodiments in which the primary key is a composite key, the
data may be partitioned first by a hash of the hash key com-
ponent, and then by the range key component. FIG. 5 illus-
trates one embodiment of a method for partitioning table data
using simple and/or composite keys, according to one
embodiment. As illustrated at 510, in this example, the
method may include a data storage service (or a component of
the underlying system that implements a data store, such as a
storage node instance or administrative component) initiating
the partitioning of a table maintained in a non-relational data
store on behalf of a storage service client.

If multiple items in the table share a hash key attribute
value, shown as the positive exit from 520, the method may
include the data store dividing the items in the table that have
a given hash key attribute value into two or more partitions
(e.g., database partitions) dependent first on a hash of their
range key attribute values, and then on their range key
attribute values, as in 540. In other words, if the primary key
for the table is a composite key that includes hash key com-
ponent whose values may be used to identify a group of items
and a range key component whose values may be used to
order items having the same hash key attribute values and
uniquely identify each of those items, both the hash key
attribute value and the range key attribute value may be used
to partition the items in the table. For example, for a group of
items that have the same hash key attribute value, the first n
items in the group (when ordered by their respective range
key attribute values) may be assigned to one partition, the next
m items in the group may be assigned to a second partition,
and so on. Note that in some embodiments, each partition may
include a portion of the items sharing one hash key attribute
value and may also include other items having other hash key
attribute values.

If none of the items in the table share a hash key attribute
value, shown as the negative exit from 520, the method may
include the data store dividing the items in the table into two
or more partitions dependent on a hash of their respective
hash key attribute values, as in 530. For example, if the
primary key for the table is a simple key that includes hash key
component whose values may be used to uniquely identify
each of the items in the table, the items in the table may be
partitioned (i.e. assigned to one of a plurality of partitions)
dependent a hash of the hash key attribute value, but not
dependent on any other item attribute values. In some
embodiments, if the primary key is a composite key, but none
of'the items in the table share a hash key attribute value (i.e. if
each item has a unique hash key attribute value), the data store
may partition the items as if the primary key were a simple
key (i.e. it may partition the items in the table using the hash
key attribute value alone).

Once the data store has assigned all of the items to a
partition, the data store may store each of the partitions on a
respective storage node (e.g., a respective computing node or
storage device), as in 550. In some embodiments, each parti-
tion of a single table may be stored on a different storage
node, while in other embodiments two or more of the parti-
tions may be maintained on the same storage node. In various
embodiments, each of the resulting partitions may be repli-
cated one or more times in the data storage system, as in 560.
Note that in some embodiments, the number of partitions into
which the items of a given table are partitioned may be pre-
determined (e.g., it may be based on user input/preferences,
or historical data for a client, account, or table type), while in

10

15

20

25

30

35

40

45

50

55

60

18

other embodiments, the number of partitions into which the
items of a given table are partitioned may be determined as the
partitioning operation progresses, e.g., based on the number
of items in each range of hash results and/or the number of
items in each range of range key attribute values. Note also
that because the partitioning is based on a hash result, the
order in which groups of items may be assigned and distrib-
uted among the available partitions may be somewhat ran-
domized. In some cases, e.g., if some items are accessed
much more frequently than others or some groups of items
include a higher number of items than others, an initial par-
titioning may result in hot spots. In such cases, a repartition-
ing operation may be performed in order to more evenly
distribute the items among the available partitions (e.g., with
respect to data volume and/or service request traffic). Note
also that in some embodiments, the items in a table may be
partitioned using a single hash key component and two or
more range key components.

Table 2 below illustrates an example of the partitioning of
items in table using a method similar to that illustrated in FIG.
5. In this example, the hash key attribute is a “User name”
attribute, and the range key attribute is a “Message ID”
attribute. The table stores multiple messages associated with
each of three user names (Bob, Sue, and Phil). As illustrated
in Table 2, some partitions of a given table may include only
items having the same hash key attribute value. In this
example, a partition identified by a Partition ID value of A
stores only messages having the hash key attribute value
“Bob”. Note that this partition does not store all of Bob’s
messages, only messages having Message ID values (i.e.
range key attribute values) 1-199. Another group of Bob’s
messages (those with range key attribute values 200-299) are
stored in a partition identified by a Partition ID value of B.
This partition also stores messages having a hash key attribute
value of “Sue”, specifically, those messages having range key
values of 1-50. Yet another group of Bob’s messages (those
with range key attribute values 300-399) are stored in a par-
tition identified by a Partition ID value of C. This partition
also stores messages having a hash key attribute value of
“Phil”, specifically, those messages having range key values
of 1-100.

TABLE 2
User name Message ID Partition ID
Bob 1 A
Bob 2 A
Bob 199 A
Bob 200 B
Bob 299 B
Bob 300 C
Bob 399 C
Sue 1 B
Sue 2 B
Sue 50 B
Phil 1 C
Phil 2 C
Phil 100 C

In the example above, a request to retrieve all of Bob’s
messages may retrieve messages 1-199 from partition A
(which may be maintained on a particular storage node),
messages 200-299 from partition B (which may be main-
tained on a different storage node), and messages 300-399

US 9,367,252 B2

19

from partition C (which may be maintained on yet another
storage node). As described in more detail herein, in some
embodiments, a request to retrieve all of these messages may
be terminated early (e.g., if response limit is reached), and the
remaining messages may be retrieved in response to a subse-
quent request.

In some embodiments, the data storage service (and/or
underlying system) described herein may provide two differ-
ent APIs for searching the data maintain in tables on behalf of
storage service clients: a Scan API and a Query API. In some
embodiments, the Scan API may be used to request an opera-
tion that scans an entire table. A Scan request may specify one
or more filters to be applied to the results of the scan opera-
tion, e.g., to refine the values returned to the requestor fol-
lowing the complete scan. In some embodiments, the service
(and/or underlying system) may impose a limit on the scan
results, and the limit may be applied before the results are
filtered. For example, in some embodiments, the system may
use pagination (e.g., dividing a scan or query process into
distinct pieces having a pre-determined maximum size in
terms of the number of items evaluated or returned, or in
terms of the amount of data scanned or returned) in order to
respond to scans and/or queries quickly. For example, in order
to scan a table that is larger than the pre-determined maxi-
mum size (e.g., 1 MB) or for which the resulting data set is
larger than a pre-determined maximum size (e.g., 1 MB),
multiple scan or query operations may need to be performed
to scan the entire table, in 1 MB increments. It may be pos-
sible for a scan operation to return no results, if no table data
meets the specified filter criteria.

In some embodiments, the Query API may support com-
parison operations to limit the search process to the data that
matches the supplied query conditions (e.g., conditions on the
attributes of the items). For example, a Query request may be
used to find all the data in a table that matches the parameters
specified in the request, up to a pre-defined limit (if such a
limit is imposed by the system). In some embodiments, a
Query request may always returns results, but the system may
return empty values if the query conditions (i.e. the attribute
filter criteria) does not match any of the results. In various
embodiments, a Query API may be used to query a table that
is maintained on behalf of a storage service client (e.g., a user,
customer, subscriber, or client application) for information
stored in that table. In some embodiments, the query may be
performed based on a primary index (according to a specified
hash key and, in some cases, a single range key value that
satisfies a specified range key predicate). In other embodi-
ments a primary key may include a single hash key compo-
nent and two or more range key components.

A more detailed example of a method for performing a
query, as specified by the API described herein, is illustrated
by the flow diagram in FIG. 6, according to one embodiment.
As illustrated at 610, in this example, the method may include
receiving a service request to perform a query that is directed
to one or more items in a table in a non-relational database
(e.g., a table maintained on behalf of a data storage service
client). As in previous examples, the request may include a
table name (which may identify the table that is the target of
the query), and a primary key value. In this example, the
specified primary key value is a composite key value (i.e. the
primary key for the identified table is a composite primary key
dependent on a hash key value and a range key value), and the
query may target multiple items that match the hash key value
and range key condition specified in the request, as described
herein. As illustrated at 620, the method may include parsing
the request to determine the hash and range values specified in
the request.

10

15

20

25

30

35

40

45

50

55

60

65

20

The method may include directing the query to a partition
that comprises an initial target of the query, dependent on the
specified hash and range values, and retrieving information
about one or more targets of the query (e.g., attribute values of
the items targeted by the query) from that partition, as in 630.
For example, in some embodiments, the items matching a
particular hash key value may be ordered in the table by their
range key values. In such embodiments, the combination of
the specified hash key value and the first range key value that
matches the specified range key condition may uniquely iden-
tify the first item in the table that matches the query condi-
tions. In such embodiments, a query may first be directed to
the partition that contains the item identified by this combi-
nation. In some cases, one or more additional items matching
the specified hash key value and the specified range key
condition may be present on the first partition to which the
query is directed, and all of these targets (i.e. the items them-
selves and/or a specified subset of their attribute values) may
be returned in response to the query.

In some cases, some of the items matching both the speci-
fied hash key value and the specified range key condition may
be stored on one or more partitions of the table other than the
first partition to which the query was directed. If so, shown as
the negative exit from 640, the query may be directed to the
one or more other partitions, and these additional query tar-
gets may be retrieved, as in 650. For example, the number of
items matching both the specified hash key value and the
specified range key condition may be larger than the number
of items stored in each partition of the table. In another
example, because of the order in which items are sorted and
stored in the table and/or assigned to various partitions (e.g.,
in embodiments in which items are sorted in a particular order
and assigned to a particular partition according their range
key values), the targeted items may cross a partition bound-
ary. In these and other cases, the method may include return-
ing a response that includes one or more attribute values of
one or more items matching both the hash key value and the
range key condition, as in 670, where some of the one or more
items matching both the hash key value and the range key
condition may be retrieved from different partitions (and, in
some cases, different physical computing nodes or storage
devices).

As illustrated in FIG. 6, however, if all of the items match-
ing both the specified hash key value and the specified range
key condition are stored on the first partition to which the
query was directed, shown as the positive exit from 640, the
method may include returning a response that includes one or
more attribute values of one or more items matching both the
hash key value and the range key condition, as in 660, where
all of the one or more items matching both the hash key value
and the range key condition are retrieved from the initially
targeted partition (and, thus, a single physical computing
node or storage device).

In various embodiments, a Scan API may be used to
retrieve one or more items and attributes stored in a table on
behalf of a storage service client by performing a full scan
across the table. The items returned may be limited by speci-
fying a filter. In some embodiments, the Scan API may sup-
port richer semantics than the Query API described above.
For example, it may support comparison operators such as
“CONTAINS”, “IS NULL”, “IN™, etc.

Note that in some embodiments, the following error indi-
cations may be returned by any of the APIs supported by the
service, while others may be returned by specific ones of
these APIs.

InvalidParameterValue

MissingParameterValue

US 9,367,252 B2

21

InternalFailure

ServiceUnavailable

In some embodiments, any or all of the metadata described
herein as being used in maintaining and managing tables on
behalf of a data storage service client (including any of the
metadata tables described herein) may be stored in the same
scalable data store (e.g., the same non-relational database) as
thatin which the client/user tables are stored. In such embodi-
ments, the system may include or employ one or more boot-
strapping mechanisms to assist with initialization of the data
storage service (and/or the underlying system that imple-
ments a data storage service), some of which are described
herein. FIG. 7 illustrates a portion of a data model for such a
system, according to one embodiment. In this example, vari-
ous computing nodes (represented in the data model simply
as “nodes 710”) may store user data (e.g., in tables maintained
on behalf of a user) and/or system data, including metadata
used by the data storage service, such as that described above.
Therefore, each node 710 of the data model may include an
indicator of the type of the node, shown as node-type 715. For
example, in one embodiment, each node may be designated as
a “storage node”, a “request router”, an “auto-admin” node,
or a “staging” node. In some embodiments, a “storage node”
may store user data in one or more tables maintained by the
data storage service, but metadata (e.g., data stored in one or
more of a Tables Table, a Subscribers Table, a Partitions
Table, or a Nodes Table) may be hosted on other types of
nodes (e.g., “auto admin” nodes and/or “staging” nodes). In
other embodiments, such metadata may be stored on one or
more “storage nodes”, some of which may also store user
data. As illustrated in FI1G. 7, each node 710 may also include
an identifier of the node (shown as node-id 720), and one or
more other elements (shown as 730).

As illustrated in FIG. 7, information about each replica
may be represented in the data model as a replica 740. Each
replica 740 in the data model may include an identifier of the
node on which the replica is hosted (shown again as node-id
720), and one or more partition identifiers (shown as parti-
tion-id 735) indicating the partitions included in those repli-
cas. In this example, each partition may be represented in the
data model as a partition 750 and may include its partition-id
755. As illustrated in FIG. 7 by various one-to-many map-
pings, each node may host multiple replicas, and each parti-
tion may be included in multiple replicas.

In some embodiments, the systems described herein may
support seamless scaling of user tables in a “fully shared
nothing” type architecture. For example, in some embodi-
ments, each partition may be implemented as a completely
independent parallel computation unit. In such embodiments,
the system may not provide distributed coordination across
partitions or support batch “put” operations and/or multi-
statement transactions. In some embodiments, as long as the
workload distribution is well spread across partitions, an
increase in the number of partitions may result in a larger
usable table size and/or increased throughput capacity for
service requests. As described herein, in some embodiments,
live repartitioning (whether programmatic/automatic or
explicitly initiated) may be employed to adapt to workload
changes. In other words, in some embodiments, repartition-
ing (including partition moving, partition splitting, and other
repartitioning operations) may be performed while service
requests directed to the affected partitions continue to be
received and processed (i.e. without taking the source parti-
tion off-line).

In different embodiments, the data storage service (and/or
underlying system) may support a variety of service offerings
and/or throughput models. For example, in some embodi-

10

15

20

25

30

35

40

45

50

55

60

65

22

ments, the service may support a committed throughput offer-
ing and/or a best effort offering. In some embodiments, a
storage service client (e.g., a client application, user, or sub-
scriber having access to the service) may specify a preference
between multiple throughput options that are offered by the
service, according to a variety of business models, subscrip-
tion types, and/or payment models. For example, the client/
user may indicate a preferred throughput model for a particu-
lar table through a parameter of a request to create the table,
in some embodiments. In other embodiments, a client/user
may specify a default throughput model for all tables created
and maintained on their behalf by the data storage service. By
supporting both a committed throughput model and a best
effort throughput model (for which no throughput guarantees
are made), the system may allow clients/users to make a
trade-off between performance and cost, according to their
needs and/or budgets.

A data storage service (and underlying system) that pro-
vides a committed throughput offering may be configured to
pre-allocate capacity and/or resources for the creation,
growth, and management of a table maintained on behalf ofa
client/user in response to traffic directed to the table, and not
to overbook the resources and/or capacity of the storage
node(s) on which that table is maintained. In some embodi-
ments, tables maintained by the service (and underlying sys-
tem) under a committed throughput model may be main-
tained in faster (and often more expensive) storage resources,
such as high performance media (e.g., flash memory or Solid
State Drive, or SSD, media), in order to provide extremely
low latencies when servicing requests from the client/user.
For example, the system may provide (and dedicate) a high
ratio of fast/local memory to main (e.g., disk) memory for the
maintenance of those tables (and various partitions thereof).
While the storage resources allocated to a given table under a
committed throughput model may in some cases be underuti-
lized (at least some of the time), the client/user may value the
predictable performance afforded by the committed through-
put model more than the additional (and in some cases
wasted) costs of dedicating more resources than may always
be necessary for that table.

In various embodiments, there may be situations in which
a partition (or a replica thereof) may need to be copied, e.g.,
from one machine to another. For example, if there are three
replicas of a particular partition, each hosted on a different
physical or logical machine, and one of the machines fails, the
replica hosted on that machine may need to be replaced by a
new copy (replica) of the partition on another machine. In
another example, if a particular machine that hosts various
replicas of multiple partitions of one or more tables experi-
ences heavy traffic, one of the heavily accessed partition
replicas may be moved (e.g., using a copy operation followed
by an operation to redirect traffic) to a machine that is expe-
riencing less traffic in an attempt to more evenly distribute the
system workload and improve performance. In some embodi-
ments, the data storage service (and/or underlying system)
described herein may perform replica moves and/or replica
copying using a physical copying mechanism (e.g., a physical
file system mechanism) that copies an entire partition replica
from one machine to another, rather than copying a snapshot
of the partition data row by row (as in a traditional logical
database partition copying operation). As described in more
detail herein, in some embodiments, all write operations may
be logged before being applied to a particular partition (and/
or various replicas thereof), and they may be applied to the
partition (i.e. to the replicas thereof) periodically (e.g., in
batches). In such embodiments, while a partition replica is
being copied, write operations targeting the partition may be

US 9,367,252 B2

23

logged. During the copy operation, these logged write opera-
tions may be applied to the partition at periodic intervals (e.g.,
at a series of checkpoints). Once the entire partition has been
copied to the destination machine, any remaining logged
write operations (e.g., any write operations performed since
the last checkpoint, or any write operations that target por-
tions of the partition that were copied to the destination prior
to those write operations being logged) may be performed on
the destination partition replica by a final catch-up process. In
some embodiments, the catch-up process may examine the
sequentially ordered write operations in the log to determine
which write operations have already been applied to the des-
tination partition replica and which, if any, should be applied
to the destination partition replica once the physical copying
of'the partition data is complete. In such embodiments, unlike
with traditional partition copying or moving mechanisms, the
data in the destination partition replica may be consistent
following the completion of the operation to move/copy the
partition replica.

One embodiment of a method for moving (or copying) a
replica of a partition of a table being maintained by a data
storage service on behalf of a storage service client while the
partition is “live” is illustrated by the flow diagram in FIG. 8.
In this example, the method may include a component of the
system that implements the data storage service receiving a
request to move a replica of a partition, as in 810. For
example, the system may receive an explicit request to move
areplica from a client/user or system administrator, or such a
request may be automatically generated in the system in
response to detecting an anomaly (as described in more detail
herein). As illustrated at 820, in response to receiving the
request to move the partition, the system may be configured to
create a new replica (which may be referred to as a destination
replica), while the partition is live (i.e. while one or more
replicas of the partition continue to accept and service
requests directed to the partition). In some embodiments,
creating a destination replica may include selecting a com-
puting node or storage device on which to create the destina-
tion replica, allocating memory on the computing node or
storage device for the destination replica, creating or updating
metadata associated with the partition and/or the destination
replica, and/or performing other functions appropriate for
creating the destination replica.

As illustrated in this example, the method may include the
system copying table data from the replica being moved (or
from another source replica storing the same table data as the
replica being moved) to the destination replica using a file
copy mechanism or another physical copy mechanism while
one or more replicas of the partition are live, as in 830. In
other words, the replica may be copied to the new destination
replica using an operation that copies the physical locations
of'the replica data, rather than using a logical copying opera-
tion (e.g., one that reads and copies table data on a row-by-
row basis). As illustrated at 840, after performing the physical
copying operation, the method may include the system per-
forming a catch-up operation to reconcile any changes to the
replica data that were made during the copy operation but that
are not yet reflected in the new copy. This catch-up operation
is described in more detail below. Once the destination replica
has been created and populated, the method may include
directing traffic away from copied replica and toward the new
designation replica, as in 850. For example, the system may
configure the new destination replica to receive and service
requests targeting table data that was maintained on the par-
ticular partition replica and some or all service requests tar-
geting the partition may be directed away from the source
replica and toward the new destination replica.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some embodiments, the storage engine for the underly-
ing data store of a data storage service (e.g. a non-relational
database) may store replica data in database files, and each
replica (and database file) may be associated with a recovery
log. In such embodiments, when a service request to modify
the replica data is received, it may be logged in the recovery
log before being applied to the replica. In the case of a node
failure or system crash, the changes logged in the recovery log
may be reapplied to a previous snapshot or checkpoint of the
replica data to recover the contents of the replica. As noted
above, in some embodiments, the data storage service (and its
underlying system) may support a replica move operation
and/or a replica copying operation that employs a physical
copy mechanism. In some such embodiments, the physical
copy mechanism may employ such a log, which may ensure
that the replica data that is moved to a new destination is
consistent. FIG. 9 illustrates one embodiment of a method for
copying a replica using a physical copy mechanism, as
described above. In this example, the method begins copying
replica data from its current physical storage locations to
corresponding physical destination locations, as in 910. In
some embodiments, the physical copy operation may include
copying pages from one physical storage device (e.g., disk
storage) to a destination storage device over a network.

As illustrated at 920, during the physical copying opera-
tion, write operations targeting the partition whose replica is
being copied may be logged before being applied to the
replica being copied, as described above. In various embodi-
ments, each logged write operation (or group of write opera-
tions) may be assigned a log sequence number. In some
embodiments, the logged changes may be applied to the
replica being copied (and/or to other replicas that store the
same table data) at periodic checkpoint intervals. In the
example illustrated in FIG. 9, when a pre-determined check-
point interval passes, shown as the positive exit from 930, all
of the modifications (e.g., write operations) logged since the
last checkpoint may be applied to the replica being copied
(e.g., the source replica) and/or to other replicas that store the
same table data. Because these updates are applied while the
source replica is being copied, some of these modifications
will be reflected in the destination replica as a result of the
copying operation (e.g., modifications that were applied to a
given portion of the replica data before that portion of the data
was copied to the destination). Other modifications may not
be reflected in the destination replica following the copying
operation (e.g., modifications that were applied to a given
portion of the replica data after that portion of the data was
copied to the destination).

As illustrated in FIG. 9, the method may include continu-
ing to copy replica data from current physical storage loca-
tions to corresponding physical destination locations while it
is not complete (shown as the negative exit from 950, element
960, and the feedback to 920). The method may include
continuing to log write operations (as in 920) and to apply
logged write operations to the source replica, i.e., the replica
being copied, (as in 940) each time the checkpoint interval
passes (shown as the positive exit from 930). Once the physi-
cal copy operation is complete (shown as the positive exit
from 950), the method may include performing a catch-up
operation, in which any logged write operations that are not
already reflected in the destination replica are applied to the
destination replica, as in 970. Thereafter, if the copying of the
partition was performed as part of an operation to move the
partition replica, some or all accesses targeting the partition
whose replica was copied may be directed away from the
source replica and directed toward the new destination rep-
lica. For example, any write operations targeting the partition

US 9,367,252 B2

25

may be logged in a recovery log for the destination replica,
and subsequently applied to the destination replica (e.g., at
the next periodic checkpoint). In some embodiments, follow-
ing the copying of the replica to a new destination (e.g., as part
of' a move operation), the log in which modifications to the
source replica were logged may be copied (or used directly)
for the recovery log for the destination replica.

In some embodiments, the replica copying process
described above may be employed in partition splitting opera-
tions. For example, a partition may be split because it is large
(e.g., because it is becoming too big to fit on one machine)
and/or in order to keep the partition size small enough to
quickly rebuild the partitions hosted on a single machine
(using a large number of parallel processes) in the event of a
machine failure. A partition may also be split when it
becomes too “hot” (i.e. when it experiences a much greater
than average amount of traffic as compared to other parti-
tions). For example, if the workload changes suddenly and/or
dramatically for a given partition, the system may be config-
ured to react quickly to the change. In some embodiments, the
partition splitting process described herein may be transpar-
ent to applications and clients/users, which may allow the
data storage service to be scaled automatically (i.e. without
requiring client/user intervention or initiation).

Note that in some embodiments, moving (or copying) a
replica of a partition in a cluster may be quicker than splitting
apartition, because the system may take advantage of the file
copying process described above for replica copying. Split-
ting a partition, on the other hand, may require logically
dividing the partition data in one underlying data structure
(e.g., one B-tree) into two such data structures (e.g., two
B-trees), which is generally less efficient than moving an
entire replica, as described above. Therefore, in some
embodiments, a partition splitting process may include cre-
ating additional replicas of the partition, and thereafter man-
aging only a portion of the partition data on each replica. For
example, if there are three replicas of a given partition that is
to be split, the partition splitting process may include creating
three additional copies of the entire partition (e.g., using the
partition copying process described above). These resulting
six replicas may be split into two new replica groups of three
replicas, each of which may be configured to be responsible
for handling service requests directed to half of the original
partition data by invoking an operation to split the responsi-
bilities between the replica groups. For example, following
the operation to split the responsibilities, service requests
directed to data in a designated portion of the original parti-
tion may be accepted and serviced by replicas of a given
replica group, while service requests targeting the remaining
data of the original partition may be rejected by that replica.
In some embodiments, the partition data for which a given
replica is not responsible may eventually be removed (e.g., so
that the memory allocated to the replica for data it no longer
supports may be subsequently used to store new items in the
replica), or the memory in which it was stored may be
reclaimed by the system (e.g., so that the memory allocated to
the replica for data it no longer supports may be subsequently
used by another partition). Removal of unsupported data or
reclamation of memory may be performed by background
tasks without affecting the performance of the data storage
system, and may be transparent to clients/users.

In some embodiments, each partition may be identified by
apartition ID, which may be a unique number (e.g., a GUID)
assigned at the time the partition is created. A partition may
also have a version number that is incremented each time the
partition goes through a reconfiguration (e.g., in response to
adding or removing replicas, but not necessarily in response

10

15

20

25

30

35

40

45

50

55

60

65

26

to a master failover). When a partition is split, two or more
new partitions may be created, each of which may have a
respective new partition ID, and the original partition ID may
no longer be used. In some embodiments, a partition may be
split by the system using a split tool or process in response to
changing conditions. For example, a scheduled task of'an auto
admin instance may monitor partition sizes and “heat” (e.g.,
traffic directed to each partition), and may apply policies that
determine when to use the splitting tool/process to perform a
split. In some embodiments, the splitting tool and auto admin
instance may avoid attempting two splits at the same time by
employing a lock manager.

In some embodiments, the monitoring component may
provide a list of partitions that meet the split criteria to the
splitting tool/process. The criteria may be based on partition
size and heat, where heat may be tracked by internally mea-
sured metrics (such as IOPS), externally measured metrics
(such as latency), and/or other factors. In some embodiments,
the splitting tool/process may receive a request to split a
partition from the monitoring component that includes a par-
tition ID and a version number for the partition to split, and a
list of machines (e.g., machines in the same cluster or storage
silo that are known to be lightly loaded) for the location(s) of
the new partitions/replicas. Including the version number as
an input to the splitting tool/process may ensure that the
splitting tool/process does not attempt to split a partition that
has already gone through one or more reconfigurations since
the last time it was evaluated against the split criteria, as the
splitting tool/process may reject the request if version number
does not match.

One embodiment of a method for splitting a partition of a
table being maintained by a data storage service on behalf of
a storage service client is illustrated by the flow diagram in
FIG. 10. In this example, the method may include a compo-
nent of the system that implements the data storage service
receiving a request to split a partition, as in 1010. For
example, the system may receive an explicit request to split
the partition from a client/user or system administrator, or
such a request may be automatically generated in the system
in response to detecting an anomaly (as described in more
detail herein). As described above, in some embodiments,
splitting a partition may involve creating additional replicas
of the partition, dividing the resulting collection of partition
replicas into two or more new replica groups, and then des-
ignating each of the replica groups as managers of a respec-
tive portion of the original partition. Therefore, as illustrated
at 1020, in response to receiving the request to split the
partition, the system may be configured to initiate creation of
the one or more new partition replicas (which may be referred
to as destination replicas), while one or more of the original
replicas of the source partition are live (i.e. while one or more
of these replicas continue to accept and service requests
directed to the partition). As illustrated at 1030, the method
may include copying data from one or more source partition
replicas to the destination replicas using a physical copy
mechanism (such as that described above). For example, the
system may be configured to copy the table partition data
from one (or more) of the original replicas of the partition to
one or more of the destination replicas using a file copy
mechanism, in some embodiments. The method may also
include bringing the new replicas (once populated) up-to-date
(e.g., by performing a catch-up operation, as described
above).

As illustrated in this example, the method may include
propagating a special “write” command (i.e. a “split” com-
mand) to split the partition by dividing the resulting collection
of replicas into two or more new replica groups and designat-

US 9,367,252 B2

27

ing (and/or configuring) each replica group as handling ser-
vice requests directed to a respective portion of the split
partition, as in 1040. In some embodiments, the system may
take the source replicas out of use briefly while the command
to split the partition replicas is propagated to the storage
nodes on which the resulting collection of replicas are hosted.
In other words, the system may not accept other service
requests directed to the partition being split while the split
command is operating to configure the new replica groups to
receive subsequent service requests. In an example in which
a partition is being split into two new partitions, the split
command may instruct the replicas resulting from the copy
operation to split in half by designating each replica as
belonging to the first half of the range or the second half of the
range, thus forming two new replica groups. In other embodi-
ments, the split command may designate each replica as
belonging to one of more than two replica groups. Note that in
some embodiments, the special “split” command may not
require any special durability, while in others it may require
the same durability as any other replicated write operation, or
may have a different durability requirement than other repli-
cated write operations.

As illustrated in this example, once the “split” command
has been propagated and the new replica groups have been
established, if the system is a single master system or a
multi-master system, the method may include each of the new
replica groups electing one or more masters for the replica
group, as in 1050. Subsequently, the replicas in each of the
new replica groups for the split partition (e.g., a replica group
made up of the original replicas, a replica group made up of
the destination replicas, or a replica group made up of any
other subset of the resulting replicas for the split partition)
may handle requests directed to a respective portion of the
original partition, as in 1060. For example, each of the repli-
cas may reject requests for the table data that is now out of its
new smaller range, and may return an indication that the
replica (or the node on which the replica is hosted) no longer
hosts that data. As described above, in some embodiments,
the system may be configured to perform a logical reclama-
tion of the unused portions of the resulting split partition
replicas, as in 1070. For example, as requests to store new
items in the partition are received, these new items may be
stored in locations in the table that (following the replica
copying operation) held items stored in the original partition,
but that are now being managed as part of a different partition
(i.e. one of the two or more new partitions created by the
split). In some embodiments, the system may employ a back-
ground process to logically free up space within each of the
resulting partition replicas, but that space may be consumed
later if more items are added to the table that are assigned to
the new partition replicas according to their hash key attribute
values and/or range key attribute values. In some embodi-
ments, a physical memory reclamation operation may be
performed, which may return a portion of the memory that
was previously allocated to a large partition replica prior to
the split to the operating system. In such embodiments, a
de-fragmentation operation may also be performed.

As noted above, the partition moving process illustrated in
FIG. 8 and described above may be initiated automatically
(e.g., programmatically) in response to detection of an
anomaly in a system that implements a data storage service, in
some embodiments. One embodiment of a method for mov-
ing a partition of a table being maintained by a data storage
service on behalf of a storage service client in response to
detecting an anomaly is illustrated by the flow diagram in
FIG. 11. As illustrated at 1110, in this example, the method
may include a component of the system detecting a failure or

25

30

40

45

28

fault on a physical computing node or storage device that is
hosting a replica of a partition of the table. In some embodi-
ments, if the partition replica hosted on the node on which a
fault or failure was detected was a master for its replica group,
the method may include electing a new master for the replica
group, as in 1120. In this example, the method may include
the system initiating creation of a replacement partition rep-
lica while a source partition replica is live (i.e. while one or
more of the replicas of the source partition continue to accept
and service requests directed to the partition), as in 1130.

As illustrated in this example, the method may include
copying a source partition replica to the newly created
replacement partition replica using a physical copy mecha-
nism (as in 1140), and performing a catch-up operation to
reconcile any changes to the partition data that are not yet
reflected in the newly created replacement partition replica
(as in 1150). For example, the source partition replica may be
copied to the replacement partition replica using an operation
that copies the physical locations of the partition data, rather
than using a logical copying operation (e.g., one that reads
and copies table data on a row-by-row basis). In various
embodiments, the partition replica on the faulty machine may
be used as the source partition replica, or one or more other
replicas for same partition (e.g., a replica in the same replica
group that is hosted on a working machine) may be used as the
source partition replica, e.g., depending type and/or severity
of the detected fault.

As noted above, the partition moving process described
above and illustrated in FIGS. 8 and 9, and the partition
splitting process illustrated in FIG. 10 and described above
may be initiated automatically (e.g., programmatically) in
response to detection of an anomaly in a system that imple-
ments a data storage service, in some embodiments. For
example, if a hot spot develops on a particular computing
node or storage device in the system underlying the data
storage service, the system may be configured to split a hot
partition for which a replica is stored on that computing node
or storage device and/or move one or more partition replicas
stored on that computing node or storage device to another
computing node or storage device.

In some embodiments, the data storage service (and/or
underlying system) may be configured to detect anomalies in
the system while servicing requests from one or more storage
service clients. In some embodiments, the system may be
configured to automatically (e.g., programmatically) respond
to the detection of various types of anomalies, such as by
scaling tables, moving partitions, splitting partitions, and/or
taking other actions not described herein. For example, if a
failed or faulty node (e.g., a computing node or storage
device) has been detected, the system may be configured to
replace the failed or faulty node with a new node and/or to
move any or all partitions that are hosted on the failed or
faulty node to the new node. As described herein, sucha move
may in some embodiments be performed using a physical
copy operation. As previously noted, if a failed or faulty node
hosted a partition replica that was a master for its replica
group, the system may also be configured to elect a new
master for the replica group subsequent to copying the parti-
tion to the new node.

If a hot spot or increasing table/partition size is detected,
the system may be configured to add one or more new parti-
tions and corresponding replicas (e.g., on computing nodes or
storage devices other than the one on which the hot spot was
detected), and to move and/or split data that was hosted on the
heavily loaded computing node or storage device in one or
more of the new partitions or replicas. Similarly, if the system
has detected that a best effort throughput target (or another

US 9,367,252 B2

29

user preference) is not being met or is in danger of not being
met due to increasing traffic or if the data volume is increasing
beyond a targeted capacity for the table, the system may be
configured to throttle incoming service requests while
attempting to correct the situation. Again, the system may be
configured to add one or more new partitions and correspond-
ing replicas (e.g., on computing nodes or storage devices
other than the one on which the hot spot was detected), and to
move and/or split data that was hosted on the heavily loaded
computing node or storage device in one or more of the new
partitions or replicas. Similarly, if a live repartition is explic-
itly requested (e.g., by a table owner), the system may be
configured to add or remove one or more partitions and cor-
responding replicas accordingly, or to move and/or split data
that was hosted on a heavily loaded computing node or stor-
age device in one or more partitions or replicas.

In general, once an anomaly has been detected and the
system has responded to and/or returned an indicator of that
anomaly, the system may resume (or continue) servicing
incoming requests. In some embodiments, the system may be
configured to continue operation (e.g., to continue servicing
incoming service requests) until or unless additional anoma-
lies are detected. If any additional anomalies are detected, any
or all of the operations described above for resolving such
anomalies may be repeated by the system in order to maintain
and manage tables on behalf of data storage service clients.
Note that in some embodiments, any or all of the operations
described above for resolving such anomalies may be per-
formed pro-actively (and automatically) by background tasks
while the data storage service is in operation, and may not
necessarily be performed in response to receiving any par-
ticular service requests.

In various embodiments, the systems described herein may
provide storage services to clients, and may maintain data on
behalf of clients in partitions that are replicated on multiple
storage nodes. In some embodiments, these storage systems
may implement a single master failover protocol. In some
embodiments, membership in various replica groups may be
adjusted through replicated changes, and membership and
other updates in the system may be synchronized by synchro-
nizing over a quorum of replicas in one or more data centers
at failover time using a replicated quorum version. In some
embodiments, a mechanism for splitting a partition may uti-
lize failover quorum synchronization, external master locks,
and/or various methods for detecting and resolving log con-
flicts, including log snipping (e.g., deleting log records that
are on invalid branches). The systems may implement a fault-
tolerant log shipping based replication mechanism that
includes such log conflict detection and resolution. In some
embodiments, log branching may be avoided through post-
failover rejoins. These and other replication related tech-
niques are described in more detail below.

In some embodiments, the fault tolerant failover protocol
of the replicated state machine (distributed database) in the
systems described herein may include various mechanisms
for synchronizing the read/write quorum. In some embodi-
ments, the failover may include a ‘state gathering’ phase.
During this step, the read quorum may be filled out in a
manner that ensures that everything that satisfies the write
quorum will be found (e.g., user data writes). Note that the
read quorum may also be referred to as the “failover quorum’
since it is the required quorum for proceeding with a failover
sync-up.

The replication and failover processes described herein
may be implemented by various modules and/or sub-modules
of'the storage node instances in the system. For example, alog
manager may manage the state machine for updates that are in

10

15

20

25

30

35

40

45

50

55

60

30

the process of being replicated. As noted above, in some
embodiments, the system may implement a single master log
shipping based replication approach. In some such embodi-
ments, updates may begin as log records. These log records
may be replicated in the system, and then (once they are
geographically durable) they may be committed and later
applied to the schema. This may be thought of as a replication
stream in which all replicated updates are serialized through
the stages in strictly increasing order (according to associated
log sequence numbers). In some embodiments, the state
machine may track the latest log sequence number (or the log
record that includes the latest log sequence number) to reach
each of the states rather than tracking each log sequence
number (or its associated log record) individually. The state
machine may also allow for batching, and may not be con-
cerned with missed state notifications, since (for example) if
a log record with log sequence number L. reaches state S, this
always implies that all log records with log sequence numbers
less than L have also reached state S.

As used herein, the following sequence terminology may

be assumed:

Strictly Increasing: this term refers to a sequence that is
always increasing, i.e. a sequence in which every new
instance of the sequence has a higher value than the
previous instance.

Monotonically Increasing: this term refers to a sequence
that is never decreasing, i.e. a sequence in which every
new instance of the sequence has an equal or higher
value than the previous instance.

Dense: this term refers to a sequence that does not contain
holes, i.e. there are no missing members of the sequence.
For example, 1,2,3,4,5, ...

Sparse: this term refers to a sequence that may contain
holes, possibly a large number of holes (some of which
may be large). For example, 1, 2, 7,9, 1000, . . .

Various replication and failover techniques may be

described herein using some or all of the following terms:

LSN: “Log Sequence Number”. In various embodiments,
an L.SN may include a sequence number, an indication of
a master epoch, and a lock generation identifier. These
values for a given LSN may in some cases be denoted by
sequence(LLSN), epoch(LSN), and lock(LLSN), respec-
tively.

LSN Sequence: As used herein, this term may refer to the
dense, strictly increasing integer sequence of LSNs that
define the log stream. This sequence may be defined
solely by the sequence(LLSN) of each log record. In some
embodiments, each partition may have one LSN
sequence that defines the order of events for its repli-
cated state machine.

Log Stream: As used herein, this term may refer to the
stream of events defined by the LSN Sequence. In some
embodiments, outside of the split operation, there may
be only one valid log stream such that if sequence
(LSN))= sequence(L.SN,), then epoch(LSN,)=epoch
(LSN,) and lock(LSN,)=lock(LSN,). In some embodi-
ments, if this is not true for two LSNs with the same
sequence number, then only one of those LSN’s exists in
the valid log stream. In such embodiments, the other
LSN exists in an invalid stream branch that must be
snipped out of existence (e.g., during failover). In some
embodiments, the LSN in the invalid stream branch can-
not possibly have been committed based on the system’s
quorum semantics.

Stream Branch: As used herein, this term may refer to a
point in the Log Stream where two LSNs succeed the
previous LSN, which may also be referred to as a

US 9,367,252 B2

31

branching point in the log stream. These two LSNs may
have the same sequence number, but may differ in their
lock generation identifiers, and (in some cases) in their
epoch identifiers. Following these two L.SN's there may
betwo LSN sequences defining two log streams. Each of
these log streams may be referred to as a “stream
branch”. In some embodiments, only one of these
branches will survive to become part of the final com-
mitted Log Stream. As described herein, a branching
point may be created by a failover operation that does
not find one or more uncommitted LSNs, where those
uncommitted LSN sequence numbers are redefined by
the “just failed over to”” new master replica.

Master Replica: As used herein, this term may refer to the
replica that defines (i.e. creates) new LSNs. In some
embodiments, there may always be zero or one master
replica at any given time, and this may be guaranteed by
the requirement that a master replica must hold an exter-
nal advisory lock.

Master Reign: A master replica may act as (i.e. perform the
role of) the master for its replica group until it loses or
releases the external lock. A single master reign may be
defined from the time when the master replica becomes
master (i.e. the time when a replica assumes the role of
master replica for its replica group) until the time that it
loses, or otherwise releases, the external lock that allows
its mastership. During the master reign, the LSN epoch
and the LSN lock may remain fixed.

LSN Epoch: In some embodiments, this term may refer to
the dense, strictly increasing integer sequence of master
reigns (where a reign is the time during which a replica
serves as the master replica). In some embodiments,
when a replica becomes master, the epoch is increased
by one, and the first LSN produced by the new master
replica may be marked as an epoch change L.SN. In the
LSN sequence, the epoch may be monotonically
increasing.

LSN Lock: In some embodiments, a master replica must
have a single valid lock while serving a reign as master
(including while performing the failover steps to
become master). The LSN lock may be a unique integer
associated with a single lock acquisition. In some
embodiments, only one reign as master (i.e. one epoch)
may be associated with a single lock generation. Lock
generation identifiers for a single lock may in some
embodiments comprise a sparsely increasing sequence.
In some embodiments, an external lock manager or lock
service may generate the locks, and the value of lock
(LSN) may represent the time of the lock acquisition
transaction.

Epoch Change LSN: In some embodiments, the first LSN
of a brand new master epoch may be marked as an
“epoch change LSN”. This convention may be utilized
during log conflict detection to distinguish seemingly
valid epoch changes from invalid branches.

Valid LSN: As used herein, this term may refer to an LSN
that is not superseded by another LSN in a different
branch.

Committed LSN: As used herein, this term may refer to an
LSN that is guaranteed to survive. Note that in some
embodiments, a committed LSN may never become
invalid. In the replication protocol described herein, an
LSN may be committed when it (or an L.SN that follows
it on the same branch) becomes durable while no other
LSN in existence has higher credentials (e.g., a greater
LSN lock value).

20

25

40

45

50

32

Invalid LSN: As used herein, this term may refer to an LSN
that is superseded by another L.SN in a different branch.
In some embodiments, an LSN may become invalid at
precisely the moment that another LSN with the same
sequence but a different lock value becomes committed.
Note that, in some embodiments, an Invalid LSN will
never become committed, and may be doomed to even-
tually be snipped. In some embodiments, during log
conflict detection, if two LSNs have the same sequence,
the LSN with the higher lock value may be taken as the
valid LSN, and the LSN with the lower lock value may
be considered invalid. Note that in some embodiments,
LSNs may only be invalidated by the current master
committing another LSN with the same sequence. In
some embodiments, a master can only commit LLSNs
that it produced. Therefore, in some edge case scenarios
an LSN may become invalid by virtue of a later LSN (in
sequence) being committed when the LSN sequence
leading up to the newly committed LSN is on a different
stream branch. In these cases, an invalid LSN may have
a higher lock value than the valid LSN of the same
sequence.

Invalid Branch: As used herein, this term may refer to an
LSN stream that follows the fork of a Stream Branch that
contains only invalid LSNs.

Log Snip: In some embodiments, Invalid Branches may
always (eventually) be snipped, leaving only the valid
log stream.

As noted above, log records may advance through a series
of replication phases. For example, log records may be sub-
mitted, may become flushed, may be committed, and may
then be applied (e.g., to the schema). FIG. 12 illustrates
various states in a log sequence (e.g., on a master or slave
replica in a replica group) while undergoing a replication
process, according to one embodiment. In this example, log
records are added to the log stream 1200 on the right and
advance through the various states moving from right to left.
For example, when a log record is first submitted (shown as
1214), it resides only in local memory (e.g., RAM). While
replication is in progress (during the period labeled 1202), the
log record moves (at point z) to the flushed state (shown as
1212), after it is flushed to disk. Once the log record has been
flushed to disk, it is considered to be locally durable (during
the period labeled 1204). Subsequently (at point y), the log
record is committed. Once in the committed state (during the
period labeled 1210), the log record is considered to be quo-
rum durable (shown as 1206). For example, being quorum
durable may include being durable in a pre-determined num-
ber of data centers (e.g., in one data center or in another
pre-determined number of data centers). Finally, the log
record is written to the schema (at point x), and is considered
to be in the applied state (shown as 1208).

In some embodiments, log records (sometimes referred to
herein simply as “logs”) may be committed once they prov-
ably meet the definition of a committed log. In some embodi-
ments, the definition of “committed” may be based on sur-
vivability. In other words, a commit of a log record may
intrinsically happen once the log record is ensured to survive.
In fact, once a log record meets this definition, it may be
effectively committed regardless of whether the software rec-
ognizes this fact yet or not. It is this point in time that matters
in the failover protocol, not the actual time at which the
master proclaims that the log is committed. In some embodi-
ments, the intrinsic definition of commit may be that
described below.

In some embodiments, an LSN (log record) may be com-
mitted when it or an LSN that follows it on the same branch

US 9,367,252 B2

33

becomes durable while no other LSN in existence has higher
credentials (e.g., a greater lock value.) In such embodiments,
a master may commit a log record only when it has deter-
mined that this definition has been met for the log. By meeting
this definition, the replication and failover scheme described
herein may ensure that the log will survive. In some embodi-
ments, the failover scheme described herein may ensure that
under any single fault scenario, any durable log that has the
current highest set of credentials is guaranteed to be included
in the valid log stream (i.e. in the surviving stream of log
records). With this, replication may just need to follow one
simple golden rule: a master should only commit log records
that it produced during its current master reign. In some
embodiments, any log record that the master produced during
its current master reign will have the highest set of credentials
(e.g., the highest lock value). In such embodiments, if the
master has determined that the log has become durable, it may
infer that the failover protocol will ensure its survival.

The log replication mechanism described herein may be a
two-phase commit scheme (e.g., a 2PC scheme) that requires
a quorum of replication group (a.k.a. replica group) members
to durably persist the log and report back to the master before
the commit occurs. At that point, a successful response may
be returned the caller (or requestor), since the durability
requirement has been fulfilled. In various embodiments (e.g.,
depending on the strategy for offering consistent operations
that is in effect), the success response may occur as soon as
durability allows, or it may be postponed until the data is
applied to the schema on the master.

One embodiment of a commit flow 1300 for a log replica-
tion mechanism is illustrated in FIG. 13. As illustrated in this
example, the replica in a replica group that has assumed the
role of master for the replica group (shown as master replica
1302 in FIG. 13) performs different tasks than the other
replicas in the replica group (shown as peers 1304 in F1G. 13).
In this example, the commit flow may begin in response to the
master replica (1302) receiving an update request 1306. The
master 1302 may submit a corresponding log record to local
memory (as in 1310), and then flush the log record (as in
1312). In some embodiments, a log sequence number (or
LSN) may be assigned to the log record during the submit
phase. Note that flushing the log record (as in 1312) may
include durably writing the log record to disk.

As illustrated in FIG. 13, after flushing the log record to
disk, the master (1302) may then send an “Append” message
(1320) to one or more of the peers (1304). Each peer 1304
may flush the log record to disk (as in 1326), and may reply to
the master (1302) with a “Flushed” message (1322) indicat-
ing that the log record has been flushed by that peer (1304). If
the master (1302) receives “Flushed” messages (1322) from
an appropriate number of peers 1304 (e.g., from enough peers
in enough data centers) to satisfy the write quorum for the
system (shown as 1314), the master may return an indication
to the user who requested the update that the update is con-
sidered durable (shown as 1308).

Once the log record is considered durable (e.g., when a
quorum of “Flushed” responses indicating that the log has
been replicated is reached), the master (1302) may commit
the log record (as in 1316), and may send a “Commit” mes-
sage (1324) to the peers (e.g., to all of the replicas in the
replica group or to the replicas making up the quorum) to
inform them that the log record is durable and can be com-
mitted and/or applied. The master (1302) may then apply the
log record (as in 1318) to the schema, at which point it is
reflected in (and discoverable in) the schema (as indicated at
1340). After receiving the “Commit” message (1324) from
the master (1302), a peer (1304) may commit the log record

10

15

20

25

30

35

40

45

50

55

60

65

34

(as in 1328) and apply the log (as in 1330). Note that applying
the log may include applying updated data to the schema, and
that this may be done as a background process, in some
embodiments.

In some embodiments, a module or system component that
is configured to implement the replication and failover pro-
cesses described herein (e.g., module 275 shown within stor-
age node instance 160 in FIG. 2C) may include a collection of
sub-modules, each of which performs different ones of these
processes. For example, a RequestManager sub-module may
coordinate between a QueryUpdateManager/ChangeMan-
ager component and a LogManager component locally, and
also between a master replica and remote replica nodes. In
some embodiments, a ChangeManager sub-module may be
responsible for all disk operations, while a QueryUpdateM-
anager may receive the initial update request. The Request-
Manager may be passed the request, and may handle all
replication communication. In some embodiments, a Log-
Manager may manage the state machine for log entries as they
move through the “submitted”, “flushed”, and “committed”
states.

FIG. 14 illustrates a data replication flow from the perspec-
tive of a master replica for a replica group, according to one
embodiment. In this example, a component of the master
replica that implements both a Query Update Manager and
Change Manager (shown as 1402) may receive an update
from a requestor (shown as 1410). In various embodiments,
this update may represent a data update, a membership
update, or an update indicating another special state or opera-
tion to be performed. In response, the component 1402 may
invoke an update method (at 1428) of a Request Manager
(1404) of the master replica. The Request Manager (1404)
may invoke a method of a Log Manager (1406) of the master
replica (shown as 1430) to submit a corresponding log record.
The Log Manager (1430) may assign an LSN to the log record
(at 1444), and send an “Append” message to a Slave Replica
(1408), which may be one of two or more other replicas in the
replica group.

Meanwhile (in this example), at any time after the log
record has been submitted and its LSN assigned, the Log
Manager (1406) may invoke a method of the Query Update
Manager/Change Manager (1402) to flush the log record
(shown as 1432). The Query Update Manager/Change Man-
ager (1402) may then place the log record in a queue for
subsequent flushing (as in 1412). For example, a flush-log
worker (e.g., a workflow that is configured to flush log records
and that is executing on the master replica and/or for the
benefit of the master replica) may be configured to retrieve the
log record from the queue and flush the log record (as in 1414)
to disk (as in 1424). Once the log record has been flushed to
disk, the Query Update Manager/Change Manager (1402)
may invoke a method of the Request Manager (as in 1434)
that is configured to indicate that the master replica has
flushed the log record to disk. The Slave Replica (1408) may
also generate and send a “Flushed” message (1436) back to
the Request Manager (1404) indicating that it has also flushed
the log record to disk. The Request Manager (1404) may then
invoke a method (at 1438) of the Log Manager (1406) to
indicate that the log record has been flushed.

As illustrated in this example, once a quorum of the repli-
cas in the replica group have indicated that they have flushed
the log record (as in 1450), the Request Manager (1404) may
invoke a commit method (as in 1440) of the Log Manager
(1406), and the Log Manager (1406) may send a “Commit”
message (1448) to the Slave Replica (1408) indicating that
the log record can be committed and/or applied to the schema.

US 9,367,252 B2

35

The Log Manager (1406) may also invoke a method (1442) of
the Query Update Manager/Change Manager (1402) that is
configured to apply the log record to the schema on the master
replica. In some embodiments, invoking this method may
cause the Query Update Manager/Change Manager (1402) to
return a response to the requestor (as in 1416) and/or to add
the log record to a queue for subsequent application to the
schema (shown as 1418). Thereafter, an apply-log worker
(e.g., a workflow that is configured to apply log records to the
schema and that is executing on the master replica and/or for
the benefit of the master replica) may be employed to apply
the log record to the schema (as in 1420). In some embodi-
ments, an additional (or alternate) response may be provided
to the requestor once the log record has been applied to the
schema (shown as 1422), e.g., indicating that the requested
update has been made.

Note that in some embodiments, the timing of the response
to the request router may be based on a “data access” layer
policy. Such a policy may be dependent on how the system
has implemented consistent reads and/or other modes of effi-
ciency (which may be based on user request patterns or
instructions). In various embodiments, the response may hap-
pen immediately after the commit, or not until after the cor-
responding update is applied in the system.

FIG. 15 illustrates a data replication flow from the perspec-
tive of a slave replica in a replica group, according to one
embodiment. In this example, a Request Manager (1504) of
the slave replica may receive an “Append” message (1510)
from the Master replica (1502) of a replica group to which it
belongs. For example, the “Append” message (1510) may
include a log record to be appended to the log stream on the
slave replica. In various embodiments, this log record may
represent a data update, a membership update, or an update
indicating another special state or operation to be performed.
In response, the Request Manager (1504) may invoke a
method of a Log Manager (1506) of the slave replica (shown
as 1516). The Log Manager (1506) may then invoke a method
of'a Query Update Manager/Change Manager (1508) of the
slave replica (shown as 1524) and the Query Update Man-
ager/Change Manager (1508) may place the log record in a
queue (as in 1528), after which a flush-log worker (e.g., a
workflow that is configured to flush log records and that is
executing on the slave replica and/or for the benefit of the
slave replica) may be configured to retrieve the log record
from the queue and flush the log record (as in 1530) to disk (as
in 1536).

Once the log record has been flushed to disk, the Query
Update Manager/Change Manager (1508) may invoke a
method of the Request Manager (as in 1518) that is config-
ured to indicate that the slave replica has flushed the log
record to disk. The Request Manager (1504) may generate
and send a “Flushed” message (1512) back to the Master
replica (1502) indicating that the slave replica has flushed the
log record to disk. The Request Manager (1504) may then
invoke a method (at 1520) of the Log Manager (1506) to
indicate that the log record has been flushed.

Atsome point (assuming the log record achieves durability
at the appropriate number of replicas and/or data centers), the
Request manager (1504) of the slave replica may receive a
“Commit” message (shown as 1514) from the Master replica
(1502) indicating that the log record can be committed and/or
applied to the schema (e.g., if the applicable write quorum has
been reached). In response to receiving the “Commit” mes-
sage, the Request manager (1504) may invoke a method of the
Log Manager (1506) that is configured to commit the log
record (shown as 1522). The Log Manager (1506) may then
invoke a method of the Query Update Manager/Change Man-

20

40

45

36

ager (1508) to apply the log record to the schema (shown as
1526). The Query Update Manager/Change Manager (1508)
may then place the log record in a queue for subsequent
application (as in 1532). As illustrated in this example, an
apply-log worker (e.g., a workflow that is configured to apply
log records to the schema and that is executing on the master
replica and/or for the benefit of the master replica) may be
employed (as in 1534) to apply the log record to the schema
(as in 1538).

In some embodiments, the replication failover protocol
may be designed to be fault-tolerant with a geographically
aware durability requirement, and may support online mem-
bership changes, replication group splitting, and/or geo-
graphic replica migration. As previously noted, the system
may utilize a single-master log shipping replication scheme
that uses a data-center-centric quorum scheme. The quorum
scheme described herein may ensure that all updates that
could possibly have been reported back to the user as being
successful will be found during a failover. The write quorum
logic may be implemented in a WriteQuorum class, while
another class may implement the read quorum (which may
also be referred to as the “failover’ quorum).

In some embodiments, the quorum logic may be imple-
mented according to the following criteria:

A replication group may be defined to exist in N data

centers.

A write may be considered durable if it has been persisted
in K data centers, where K<=N.

A failover may be guaranteed to find all durable writes if
and only if the new master syncs with all members in
each of N-K+1 data centers.

In some embodiments, the system may be configured with
N=3 and K=2.

According to these assumptions, all writes can be found, and
failover can succeed following any single replica failure pro-
vided that replicas exist in all N data centers prior to the
failure.

One embodiment of a method for replicating a write opera-
tion in a data storage system is illustrated by the flow diagram
in FIG. 16. As illustrated in this example, the method may
include receiving a write request from a client and routing that
write request to the master replica of the appropriate replica
group (as in 1600). For example, in response to a client
issuing a write operation using a “Putltem” APIL, a
“Deleteltem” APL, an “Updateltem” API, or any other mecha-
nism for initiating a write operation (i.e. a state modifying or
data modifying operation) targeting the data storage system,
a write operation may be initiated by the master replica. The
method may include the master replica in the replica group
shipping a log record for the write operation to all members of
the replica group as an “append” message, as in 1610. The
method may include a slave replica in the replica group
receiving the log record, appending it to its log, and returning
a “flushed” message back to the master replica, as in 1620.

If the write quorum is not reached, shown as the negative
exit from 1630, the operations illustrated as 1620-1630 may
be repeated until a write quorum is reached, in this example.
For example, other slave replicas may receive the log record,
append it to their logs, and return “flushed” messages back to
the master replica, and the master replica may continue to
monitor those messages until a quorum is reached (e.g., until
at least one replica from each of K data centers responds with
a “flushed” message). Once a write quorum is achieved
(shown as the positive exit from 1630), the master replica may
consider the log committed, as in 1640. The master replica
may then return a response to the requestor of the write
operation (i.e. the client, in this example), and may ship a

US 9,367,252 B2

37

“commit” message to the other replicas in the group. As
illustrated in this example, the master replica and the other
replicas in the group may then apply the write operation
indicated in the committed log record to the data they man-
age, as in 1650. Note that in other embodiments, the opera-
tions illustrated at 1620-1630 may not be repeated indefi-
nitely in an attempt to meet a write quorum, but the attempt
may be abandoned if a timeout expires prior to establishing a
quorum or once it is clear that there are not enough replicas
remaining in the replica group for a quorum to be established.
In such embodiments, if the write quorum is not reached, the
system may not return a response to the client, and the client
may (or may not) re-issue the write operation.

One embodiment of a method for performing a read opera-
tion in a data storage system is illustrated by the flow diagram
in FIG. 17A. In this example, the data storage system uses a
quorum mechanism for performing read operations. As illus-
trated at 1710, in this example, the method may include a
master replica in a replica group receiving a request to per-
form a read operation, and (in response) shipping the request
to all members of the replica group. For example, a client may
initiate a read operation using a “Getltem” or “Getltems”
API, or using another mechanism to initiate the retrieval of
data or state stored in the data storage system. The method
may include a slave replica in the replica group receiving the
request and returning the requested data, as in 1715.

If the read quorum is not reached and (in this example) if a
timeout period has not yet expired, shown as the negative exit
from 1720 and the negative exit from 1730, the operations
illustrated as 1715-1730 may be repeated until a read quorum
is reached. For example, other slave replicas may receive the
read request and return the requested data back to the master
replica, and the master replica may continue to monitor those
responses until a quorum is reached (e.g., until a result is
returned by all replicas of at least N-K+1 data centers, at
which point the returned result that is associated with the
highest credentials may be considered the correct result), or
until the timeout period expires (shown as the positive exit
from 1730). When and if a read quorum is achieved (shown as
the positive exit from 1720), the master replica may return a
response to the requestor of the read operation, as in 1725. If
a read quorum is not reached before the timeout period
expires (shown as the positive exit from 1730), the method
may include the master replica returning an error message to
the requestor, as in 1735.

Another embodiment of a method for performing a read
operation in a data storage system is illustrated by the flow
diagram in FIG. 17B. In this example, the data storage system
does not use a quorum mechanism for performing read opera-
tions. As illustrated in this example, the method may include
receiving a request for a read operation from a client, as in
1740. For example, a client may initiate a read operation
using a “Getltem” or “Getltems” API, or using another
mechanism to initiate the retrieval of data or state stored in the
data storage system. If the read is to be performed as a con-
sistent read operation (shown as the positive exit from 1745),
the method may include routing the request to the master
replica for the appropriate replica group, as in 1750. In this
case, the master replica for the replica group may receive the
request and return the requested data to the client, as in 1755.
For example, in some embodiments, the master replica main-
tains an item cache storing information about items (or logs)
that have been committed up to the current point. Therefore,
the most recent version of the requested data may be present
in that cache and/or on disk, and master may serve it without
consulting any other replicas. Note that a read operation may
be performed as a consistent read operation if the underlying

20

25

30

40

45

55

38

system implements consistent read operations for all read
operations or if this option is specified for the partitions
hosted onthe replica or for the requested read operation itself,
in different embodiments.

If the read operation is not to be performed as a consistent
read operation (shown as the negative exit from 1745), it may
be performed as an eventually consistent read operation. In
general, an eventually consistent read may be served by any
replica in the appropriate replica group. As illustrated in this
example, the request may be routed to an arbitrary replica in
the appropriate replica group, as in 1760, and that replica may
receive the request and return the requested data to the client,
as in 1765. Note that a read operation may be performed as an
eventually consistent read operation if the underlying system
implements eventually consistent read operations for all read
operations or if this option is specified for the partitions
hosted onthe replica or for the requested read operation itself,
in different embodiments.

In some embodiments, instances of a MasterContext class
may hold and/or advance the master state machine state. In
other words, these MasterContext instances may implement
all failover logic that drives the state machine. The state
machine may be driven by attempts to become master of a
replica group once the external lock for the replica group is
held. A replica acting as the master replica may transition
back to slave status when the lock is lost, or if the node cannot
otherwise perform its role as the master replica.

A failover process may be performed in response to various
system events or conditions (e.g., in response to the failure of
a storage node instance or communication link thereto, or in
response to a change in partitioning or replica group mem-
bership). Failover may be driven by one of the replicas in a
replica group attempting to become the master for the group.
Failover may be considered complete when the replica
attempting to become master assumes mastership of the rep-
lica group by successfully completing all of the steps required
to become master.

In some embodiments, the failover protocol may be
defined by the following series of steps, which are described
in more detail below:

1. Acquire External Advisory Lock

2. Gather State

3. Fetch Tail

4. Replicate Tail

5. Write the first LSN of the new epoch

6. Wait for the epoch change L.SN to become durable, then
commit the tail

7. Assume master

In some embodiments, in order for a replica to become the
master for its replica group, it must first acquire an external
advisory lock designated for the replication group. In some
embodiments, this lock may be uniquely identified by the
partition identifier of the data partition for which the replica-
tion group manages data. Note that in some embodiments,
only one replica may be able to hold the lock at any one time
(e.g., an external lock manager or service may ensure that this
is the case). In some embodiments, only one master attempt
may be made per lock acquisition. Each lock acquisition may
include generation and/or assignment of a unique lock gen-
eration identifier, which may be guaranteed to be greater than
the identifier of any previous lock acquisition (e.g., the exter-
nal lock manager or service may ensure that this is the case).
In some embodiments, areplica that successfully acquires the
lock may drive the failover until it succeeds in becoming
master, or until it fails (in which case it may release the lock
so that another replica may attempt to become master for the
replica group).

US 9,367,252 B2

39

In some embodiments, gathering state may include query-
ing all members of a replication group for their latest flushed
and committed LSNs, and for their membership version (as
described below). While gathering state, a test for a quorum
may be performed upon receipt of every response to those
queries. In some embodiments, peers are counted for the
quorum (i.e. included in the quorum) if and only if they
indicate that they support the candidate peer for master of the
replication group. In some embodiments, mastership is not
supported by a peer if it knows of (e.g., if it has observed) a
newer membership version (which may require catch-up and
re-iteration), if it does not host the replica (which may indi-
rectly indicate that the membership version is out of date), or
if it has observed a newer lock value (as a safe-guard).

In various embodiments, synchronization for changing the
quorum set (i.e. the set of participants in the quorum scheme)
may utilize a ‘membership version’ (or more generically a
‘quorum version’) that is updated through a replicated
change, and whose current value is maintained for the replica
group in a membership version indicator (e.g., in metadata
maintained by the master replica). In some embodiments,
each of the other replicas may maintain a membership version
indicator that stores the most recent membership version of
which it is aware (i.e. that is has observed). In some embodi-
ments, a replica that is attempting to become master may
iterate on filling out the failover quorum (i.e. the read quo-
rum) itself whenever a higher quorum version is discovered.
For example, on a failover, the replica attempting to become
the new master may fill out the failover quorum. Upon dis-
covering a higher quorum version, the replica attempting to
become the new master may immediately synchronize the
data leading up to the new version. After synchronizing, the
replica may be ensured that it has found everything that used
the pre-quorum change quorum for durability (in other words,
it used the correct failover quorum for discovery of that data).
Thereplica may then start gathering state again (filling out the
failover quorum) using the newly defined quorum.

In some embodiments, the master hopeful must catchup its
membership version during this step if any participating peer
knows of (and reports) a more recent membership version.
For example, the replica may be required to catch up (syn-
chronize) its log to the more recent membership change, and
then start the gathering state step over again using the new
membership. Note that this may iterate more than once, in
some cases.

Note that if the replica’s log is snipped due to detecting a
log conflict during this catch-up, it may iterate without reach-
ing the membership change (and may be forced to catch up
from farther behind). Note that if any member reports a newer
membership version, and the replica that is attempting to
become master is no longer part of the membership, the
attempting replica may abandon the attempt, and may stop
hosting the replica. Note that in some embodiments, only log
records that are known to be in conflict (i.e. that have been
determined to be in conflict) are snipped from the log and then
further iterations of the catch-up operation may be performed
in order to synchronize the log (e.g. unwinding the log stream
as any additional conflicts are discovered during these addi-
tional iterations).

In some embodiments, the failover protocol described
herein may enable safe membership changes (with respect to
the quorum scheme), and may allow the quorum to be safely
reconfigured when necessary. Since replication group split-
ting is also (in part) a membership change, it may be one of the
primitives that enable partition splitting as well. Once mas-
tership is supported by the failover quorum of peers, the
replica may move to the next step.

10

15

20

25

30

35

40

45

50

55

60

65

40

In some embodiments, fetching the tail may include fetch-
ing any missing tail of the log (any log records not already
appended to the replica’s log) from the quorum member with
the highest [.SN credentials. In such embodiments, the high-
est LSN credentials may be the credentials that include the
highest lock value, or the credentials that include the highest
sequence value (e.g., if the lock values of multiple log records
are the same). Again note that if the replica’s log is snipped
due to detection of a log conflict during a process to catch-up
the log tail, the replica may iterate, starting the catch-up again
from the point at which the conflicting log record was
snipped.

Insome embodiments, once the tail is caught up, the replica
may replicate the tail such that the tail meets the durability
requirement (e.g., that it is durable in at least K data centers).
In some embodiments, the tail may be replicated to all nodes,
but only the minimum necessary durability may be required.

Oncethe tail is verified replicated, the replica may write the
first LSN of the new epoch. In other words, the replica may
write metadata about the change in the mastership for the
replica group, and the corresponding L.SN may be marked as
an “epoch change” (which may be useful later for log conflict
detection and determining snip log cases). As mentioned
above, in some embodiments, the master is not allowed to
commit log records that it did not produce. In some embodi-
ments, in order to avoid moving forward until it is certain that
the log is fully resolved, after writing the first LSN of the new
epoch, the replica may wait for the epoch change LSN to
become durable, and then may commit the tail, and flip to
being the master.

In some embodiments, the fact that the master hopeful
stays in the ‘assuming master’ state until the epoch LSN is
durable may prevent new user updates from being accepted
prior to the replica committing the tail. Once the epoch LSN
is durable, there can be no conflicts with the found tail in a
subsequent failover. A this point, the log stream has been
completely resolved up to and including the new master
epoch LSN.

In some embodiments, once all of the steps described
above have been completed, the replica may be cleared to
become the new master. Note that in some embodiments, any
or all of these failover steps may be timed. In such embodi-
ments, each step (or iteration of a step) may be allotted a
maximum time in which it may run. In some embodiments,
these timeouts may be updated dynamically (e.g., they may
be reset based on batched progress and iteration). In some
embodiments, the system may include safeguards against
data causing sudden timeout failures that would be persistent.

One embodiment of a method for performing a replication
failover process in a data storage system is illustrated by the
flow diagram in FIG. 18. As illustrated in this example, the
method may include a replica in a replica group initiating an
attempt to become the master for the replica group, as in 1810.
The method may include the replica that is attempting to
become the master replica acquiring the external lock asso-
ciated with the replica group and/or with the data partition it
manages, as in 1820. As described above, the method may
include the replica that is attempting to become the master
replica gathering state information from another replica in the
replica group, as in 1830.

As illustrated in this example, if the other replica supports
this mastership attempt (shown as the positive exit from
1840), the method may include the adding the other replica to
the failover quorum, as in 1850. On the other hand, if the other
replica does not support this mastership attempt, the other
replica is not added to the failover quorum. This is illustrated
in FIG. 18 by the feedback from the negative exit of 1840 to

US 9,367,252 B2

41

1830. As illustrated in this example, the replica attempting to
become the master replica may continue gathering state infor-
mation from other replicas in the replica group until the
failover quorum is reached. This is illustrated in FIG. 18 by
the feedback from the negative exit of 1860 to 1830. In other
embodiments, rather than waiting indefinitely until the
failover quorum is reached, these operations may only be
repeated until a timeout period expires or until it is clear that
there are not enough replicas remaining (i.e. as yet non-
reporting) to reach the failover quorum. Note that replicas that
are not included in the failover quorum may end up with an
invalid branch of the log stream if they have flushed log
records that were not found in the failover quorum and are
thus superseded by log records produced by the newly elected
master (assuming the replica succeeds in assuming the role of
master replica).

Once the failover quorum is met, shown as the positive exit
from 1860 (e.g., once the replica attempting to become the
master replica for the group gathers information indicating
that all replicas from N-K+1 data centers support this mas-
tership attempt), the failover process may continue. In this
example, the method may include the replica that is attempt-
ing to become the master replica for the replica group fetching
any missing tail of the log stream that is found within one of
the other replicas in the quorum, as in 1870. If such a tail is
found, the method may include the replica that is attempting
to become the master replica catching up to the tail and
replicating it (e.g., sending its log records to the other replicas
in the group in one or more “append” messages). The replica
attempting to become the master may then write the first log
record of a new epoch (an epoch in which it is the master
replica), as in 1880. When this log record is durable (e.g.,
when this epoch change log record has been successfully
replicated within the replica group and the write quorum is
met with durability in at least K data centers), the replica
attempting to become the master replica may commit the
now-replicated tail. As illustrated in this example, the replica
that is attempting to become the master may at that point
assume mastership for replica group, as in 1890.

One embodiment of a method for acquiring an external
lock for a replica group (as in 1820 of FIG. 18) is illustrated
by the flow diagram in FIG. 19. As illustrated in this example,
the method may include one or more replicas in a replica
group expressing interest in an external lock designated for
the replica group (which may indicate their intention to
attempt to assume the role of master replica for the replica
group), as in 1910. The method may include one of the rep-
licas in the replica group attempting to acquire the external
lock that is designated for the replica group and/or for a data
partition it hosts (e.g., during a failover process), as in 1920.
In various embodiments, such a lock may be maintained
and/or managed on behalf of the replica or partition by an
external lock manager or an external lock service. If the
external lock manager or service does not grant the lock to the
replica that is attempting to become the lock manager (shown
as the negative exit from 1930), the method may include the
same replica or another replica in the replica group attempt-
ing to acquire the external lock designated for the replica
group, shown as the feedback from 1930 to 1920.

If the external lock manager or service does grant the lock
to the replica that is attempting to become the lock holder or
owner (shown as the positive exit from 1930), the method
may include the lock manager or service assigning a unique
lock generation identifier for the lock, as in 1940. In some
embodiments, other credentials may also be assigned by the
lock manager or service (as described herein). The failover
process may then continue. If the replica that acquires the

35

40

45

55

42

external lock succeeds in becoming the master replica for the
replica group, shown as the positive exit from 1950, the
failover process may be complete, as in 1960. For example,
the replica that acquires the external lock may have gathered
state from the other replicas in its replica group in an attempt
to build a quorum to support its mastership attempt, and that
attempt may have been successful. If the replica that acquires
the external lock does not succeed in becoming the master
replica for the replica group, shown as the negative exit from
1950, that replica may release the external lock, as in 1970.
Subsequently, the replica may again attempt to acquire the
external lock or another replica may attempt to acquire the
external lock. This is illustrated in FIG. 19 by the feedback
from 1970 to 1920.

One embodiment of a method for filling out a failover
quorum is illustrated by the flow diagram in FIG. 20. As
illustrated in this example, the method may include a replica
that is attempting to become the master replica for its replica
group beginning to gathering state information from other
members of the replica group, as in 2010. For example, the
replica that is attempting to become the master replica may
query a peer for its latest flushed and committed log records,
and its membership version, as in 2015. The methods may
include determining (based on the information gathered)
whether the peer knows of (e.g., has observed) a newer mem-
bership version than the newest membership version that is
known to the replica that is attempting to become the master
replica, as in 2020.

If the peer knows of a membership version that is newer
than the newest membership version that is known to the
replica that is attempting to become the master replica, shown
as the positive exit from 2020, the method may include the
replica attempting to catch up to the newer membership
change, as in 2025. Such a catch-up operation is described in
more detail herein. If the catch-up operation is not successful,
shown as the negative exit from 2030, the method may
include the replica abandoning its attempt to become the
master replica, as in 2075. If the catch-up operation is suc-
cessful, shown as the positive exit from 2030, and if the
replica is still a member of the replica group (according to the
newer version of its membership), shown as the positive exit
from 2035, the method may include the replica re-starting the
state gathering operation with the new membership, as in
2040. If the catch-up operation is successful, shown as the
positive exit from 2030, but the replica is no longer a member
of the replica group (according to the newer membership
version), shown as the negative exit from 2035, the method
may include the replica abandoning its attempt to become the
master replica, and no longer hosting the replica, as in 2045.

If the peer does not know of (e.g., has not observed) a
membership version that is newer than the newest member-
ship version that is known to the replica that is attempting to
become the master replica (shown as the negative exit from
2020), if the peer hosts the replica (shown as the positive exit
from 2050), and if the peer has not seen a greater lock value
than the replica has seen (shown as the negative exit from
2055), the method may include the replica that is attempting
to become the master for the replica group including the peer
in the failover quorum, as in 2060. Otherwise (e.g., if the peer
does not host the replica and/or if the peer has seen a greater
lock value than the replica has seen), the method may include
the replica that is attempting to become the master querying
one or more other replicas in the replica group. This is illus-
trated in FIG. 20 by the feedback from the negative exit of
2050 or the positive exit of 2055 to 2015. If the failover
quorum is not met (shown as the negative exit from 2065), the
method may include repeating the state gathering operations

US 9,367,252 B2

43

beginning at 2015 until the quorum met or until a timeout
period has expired (not shown). If the failover quorum is met
(shown as the positive exit from 2065), the method may
include continuing the failover process, as in 2070.

One embodiment of a method for performing a catch-up
operation on a log stream tail (e.g., as shown in element 1870
of FIG. 18) is illustrated by the flow diagram in FIG. 21. As
illustrated at 2110, in this example, the method may include a
replica that is attempting to assume mastership of its replica
group beginning an operation to catch-up to any missing tail
of the log. The method may include determining whether
another replica in the failover quorum includes a log record
with the highest lock value of any log records in the log
stream, as in 2120, and/or determining whether the other
replica includes a log record with the highest sequence value
among those with the same highest lock value, as in 2130. If
s0 (shown as the positive exit from 2120 or 2130), the method
may include the replica that is attempting to assume master-
ship fetching the tail of the log from the other replica, as in
2140. The method may also include the replica that is attempt-
ing to assume mastership attempting to catch-up to the tail of
the log from the other replica, as in 2150. For example, the
replica may attempt to synchronize up to the tail by appending
any missing log records (up to the log record with the highest
credentials) to its log.

As illustrated in this example, the method may include
determining (while attempting to synchronize up to the tail)
whether there is a log conflict that causes the replica’s log to
be snipped, as in 2160. If so, the replica’s log may be snipped
(e.g., the log records that are known to be in conflict may be
deleted) and the replica may iterate on the process one or
more times, each time starting the catch-up operation again
from the point in the log prior to the latest detected conflict.
This is illustrated in FIG. 20 by the feedback from the positive
exit 02160 to 2140. Ifno conflict that causes the replica’s log
to be snipped is detected, shown as the negative exit from
2160 (e.g., if the replica has successfully caught up to the tail
of'the log), the method may include replicating the tail of the
log to all of the other replicas in the replica group (or at least
to the replicas included in the failover quorum), and veritying
the minimum required durability of the log records in the tail
of the log, as in 2170.

If the other replica does not include a log record with the
highest lock value of any log records in the log stream or a log
record with the highest sequence value among those with the
same highest lock value (shown as the negative exits from
2120 and 2130), and there are no more replicas in the failover
quorum (shown as the negative exit from 2180), there may be
no missing tail of the log stream (e.g., no log tail having log
records with higher credentials than the log records in the log
stream of the replica attempting to assume mastership), as in
2190. If the other replica does not include a log record with
the highest lock value of any log records in the log stream or
a log record with the highest sequence value among those
with the same highest lock value (shown as the negative exits
from 2120 and 2130), but there are more replicas in the
failover quorum (shown as the positive exit from 2180), the
method may include continuing to look for a missing tail that
includes log records with the highest credentials of any log
records in the log stream. This is illustrated by the feedback
from the positive exit of 2180 to 2120.

As previously noted, in some embodiments, replication
groups (or replica groups) may be managed through repli-
cated metadata changes. In such embodiments, when any
member or members are added or removed, or when there is
a change in the state of a member or members (or any com-
bination of these operations), these membership change

10

15

20

25

30

35

40

45

50

55

60

65

44

operations themselves may be performed as replicated
changes. In general, any metadata that affects the replication
group as a whole may be managed this way.

As previously noted, synchronization for changing the
quorum set (i.e. the set of participants in the quorum scheme)
may utilize a ‘membership version’ (or more generically a
‘quorum version’) that is updated through a replicated
change. For example, in some embodiments, a metadata
change may be written that increases the quorum version
whenever a parameter of the quorum is altered (e.g. when a
member begins participating in the quorum or is added to the
set of quorum participants, when a member stops participat-
ing in the quorum, or when some fundamental property of the
quorum itself is changed). In some embodiments, the systems
described herein may use a locality-based quorum. In some
embodiments, replicated changes may be used to change the
valid data center set, and/or the minimum durability require-
ment for the write quorum (which in turn may redefine the
read quorum).

In some embodiments, membership changes may synchro-
nize with the quorum according to the following criteria.
First, as described above, membership itself may be ver-
sioned, and all membership changes may result in an increase
in the membership version. Membership changes may be
implemented as metadata writes in the LSN stream. During
failover, if any member reports a higher membership version
during the “gather state” phase (while filling out the failover
quorum), the member attempting to become master must
immediately synchronize its log up to the membership
change (or alternatively abandon its attempt to become mas-
ter), and (if continuing) start the “gather state” phase (filling
out the failover quorum) over again using the new member-
ship. By doing this, the system may be certain that a) every
LSN that became durable under the old membership has been
found (because it was possible to synchronize the log all the
way up to the membership change), and b) every LSN after-
ward used the new membership for durability assessment (up
to and including the next membership change if there is one).
This properly syncs membership with quorum at failover time
(which is when it matters).

Note that the replica might snip the log while synchroniz-
ing to the membership change LSN, in which case one or
more iterations may be performed using the old membership.
If, after synchronizing, yet another membership change is
discovered, additional synchronizing and iterating may be
required. In general, the replica may always need to find the
quorum using the correct membership, and so it may need to
iterate on each membership change.

One embodiment of a method for performing a replica
group membership change is illustrated by the flow diagram
in FIG. 22. As illustrated in this example, the method may
include a replica that is acting as the master replica for a
replica group incrementing an indication of a membership
version for the replica group, as in 2210. The method may
include the replica acting as master shipping a membership
change log record to the other members of the replica group as
a metadata write, as in 2220. The metadata may include the
incremented membership version information. Since the
membership change is replicated just as any other write
operation in the system, it may also be subject to durability
requirements (e.g., the same durability requirements as other
write operations or different durability requirements, in vari-
ous embodiments).

As illustrated in this example, if the master replica receives
an indication that the replicated membership change is
durable (e.g., that the applicable write quorum requirements
have been met), shown as the positive exit from 2230, the

US 9,367,252 B2

45

master replica may send a commit message for the member-
ship change to the other replicas in the replica group, as in
2235, and the membership change may be considered com-
mitted, as in 2260. In response, the membership change may
be applied by all of the replicas in the replica group, as in
2270.

As illustrated in this example, if the master replica does not
receive an indication that the replicated membership change
is durable (e.g., that the applicable write quorum require-
ments have been met for the replicated membership change),
shown as the negative exit from 2230, but the master replica
receives an indication that a later write operation is durable
(shown as the positive exit from 2240), the master replica may
send a commit message for the later write operation to the
other replicas in the group (as in 2245), which may imply that
the (earlier) membership change is also committed. There-
fore, in response to the later write operation committing, the
membership change may be considered committed (as in
2260) and the membership change may be applied by all of
the replicas in the replica group (as in 2270). For example, in
some embodiments, the master replica may not wait for an
indication that the replicated membership change is durable,
since it may not need to provide an indication of the result of
the change to any external requestor, but if it is determined
that a later write operation has committed, the master replica
may correctly assume everything before it (include the mem-
bership change) must have committed. If the master replica
does not receive an indication that the membership change is
durable or that a later write is durable (shown as the negative
exits from 2230 and 2240), the membership change may not
be committed (as in 2250). As illustrated in this example, this
may be discovered during a subsequent failover process (as a
log conflict or invalid branch). Note that in other embodi-
ments, the method may include the master replica monitoring
the responses received from the other replicas in the replica
group until it determines that the membership change is
durable or until the timeout period expires.

One embodiment of a method for synchronizing up to a
replica group membership change during failover is illus-
trated by the flow diagram in FIG. 23. As illustrated in this
example, the method may include a replica that is attempting
to become master for a replica group querying a peer for its
latest flushed and committed log records, and its membership
version, as in 2310. For example, the replica that is attempting
to become master for a replica group may query a peer in its
replica group (as it is currently known to the replica that is
attempting to become master). If the information received
from the peer indicates that the peer knows of a newer mem-
bership version than that known by the replica that is attempt-
ing to become master (shown as the positive exit from 2315),
the method may include the replica that is attempting to
become master attempting to catch up to the newer member-
ship change that is known to the peer, as in 2320. For example,
the replica that is attempting to become master may attempt to
synchronize up to the newer membership change by append-
ing any missing log records (e.g., log records that are not
currently found in its log stream) up to newer membership
change to its log stream. If the information received from the
peer does not indicate that the peer knows of a newer mem-
bership version than that known by the replica that is attempt-
ing to become master (shown as the negative exit from 2315),
and if state has been gathered from enough peers to establish
a quorum (shown as the positive exit from 2365), no catch-up
operation(s) may be required (e.g., on the first iteration of the
process), or the necessary catch-up operation(s) may be com-
plete (e.g., on a subsequent iteration of the process), as in
2370. If the information received from the peer does not

10

15

20

25

30

35

40

45

50

55

60

65

46

indicate that the peer knows of a newer membership version
than that known by the replica that is attempting to become
master (shown as the negative exit from 2315), but state has
not been gathered from all of the peers or from at least enough
peers to establish a quorum (shown as the negative exit from
2365), the method may include re-starting the state gathering
operation illustrated in FIG. 23 beginning at 2310.

As illustrated in this example, if a log conflict is detected
and the log of the replica that is attempting to become master
is snipped before the newer membership change (shown as
the positive exit from 2325), the method may include the
replica attempting to catch up with the log of the peer from
farther behind, as in 2330. For example, the method may
include repeating the operations illustrated as 2320-2330
from the point in the log at which a conflicting log record was
snipped away. This is illustrated in FIG. 23 as the path from
2330 to 2320. If (on the first or any other iteration of the
operations illustrated at 2320-2330) no conflicts are detected
and if the catch-up operation is successful (shown as the
negative exit from 2325 and the positive exit from 2335), and
if the replica is still a member of the replica group according
to the newer membership change (shown as the positive exit
from 2345), the method may include the replica re-starting
the state gathering operation with the new membership, as in
2360, and the path back to 2310. On the other hand, if (on the
first or any other iteration of the operations illustrated at
2320-2330) no conflicts are detected, but the catch-up opera-
tion is not successful (shown as the negative exit from 2325
and the negative exit from 2335), the method may include the
replica abandoning its attempt to assume mastership of the
replica group, as in 2340. However, if the catch-up operation
is successful, but the replica is not still a member of the replica
group according to the newer membership change (shown as
the negative exit from 2345), the method may include the
replica abandoning its attempt to assume mastership of the
replica group, and discontinuing hosting the replica, as in
2350.

As illustrated in FIG. 11 and described above, in some
embodiments, a storage system may support an operation to
split a partition into two new partitions. Splitting a partition
may in some embodiments be a failover-time operation that
involves replication group splitting (also known as live-rep-
artitioning or “sharding”). Splitting a partition may be
thought of as a combination of a membership change and an
identity change for the replication group in a single operation.
Note that the master locks (the external locks that identify the
replicas that are eligible to be the master for each replica
group) are identified by partition identifiers (which will
change due to the split). Therefore, all replica group members
that append a split log record may release their interest in the
old master lock (the lock for the pre-split replica group), and
may register an interest in the new lock (i.e. the lock associ-
ated with an identifier of the partition to which they switch as
a result of the split).

While appending the split operation results in two new
replication groups, from the perspective of any one replica,
the replica undergoes a membership change (as its replica
group is reduced in size), and an identity change (as its par-
tition id and data range change). Since the new metadata
record (which may be referred to as the split partition record,
or simply the “split record”) for the new membership change
contains the membership information of both new groups,
each new group is aware of the other’s existence. In addition,
since the new metadata record (the split record) also contains
the partition ID of the previous replica group, each new rep-
lica group remembers where it came from (which may be
useful in various catch-up scenarios). Since the split partition

US 9,367,252 B2

47

record indicates a membership change, it may synchronize
with the quorum in exactly (or substantially) the same fashion
as any other membership change (as described above).

The replication primitive for splitting the group may utilize
the quorum synchronization mechanism, in some embodi-
ments. As previously noted, this system may use an external
advisory lock manager or lock service to determine which
replica has the right to become master, and the lock may be
identified by the partition identifier. Note that the approach
described herein may work for all configurations of the local-
ity based quorum scheme described above when the failover
quorums for the pre-split and post-split replica groups overlap
each other’s write quorums. For example, if a replica group is
to be split into two new replica groups, this approach may be
applied when N-K+1>N/2, and the two replica groups are
spread identically across the same data centers. In some
embodiments, the standard configuration may include values
of N=3, K=2, which meet this constraint. Note that (in this
example) if the configuration is altered yielding N-K+1<=N/
2, splits should not be performed without reconfiguring the
quorum. In other words, for a split to be safe (i.e. guaranteed
not to accidentally yield a “split brain” scenario, in which
different replicas assume mastership of the pre-split replica
group and one or more post-split replica groups following the
attempted split), the failover quorum must work out to be a
simple majority of the configured data centers. In other
words, the failover quorum must be a set of replicas that
satisfies both the failover quorum (i.e. the number of replicas
required) and the requirement that the pre-split and post-split
replica groups overlap each other’s write quorums (i.e. that
the pre-split group’s failover quorum must overlap the write
quorum of each of the post-split groups, and vice versa).

In one example, it may be assumed that the replication
group is grown to N*2 members, including two nodes in each
of the N data centers. In this example, the split may be per-
formed as follows. First, the master replica may be instructed
to split the group into two groups, each containing N nodes,
including one in each of the N data centers. Next, the master
replica may lock the replica exclusively, and may write a split
membership record to the log stream expressed as a quorum
change (increasing the quorum version). The split member-
ship record may define any or all of: the two group member-
ships, the two groups’ post-split partition identifiers, the two
groups’ post-split data ranges, and/or the original partition
identifier. The master may then ship the new log record to all
members of the pre-split group (e.g., asynchronously, not
waiting for any acknowledgements), after which it may
append the log record to its log and execute the split operation
that is indicated in the split membership log record. Append-
ing the split membership log record may cause the master to:
change its partition identifier to the identifier of the post-split
group of which it is a member, change its data range to match
that of the post-split group of which it is a member, release its
master lock (thus demoting it from master status of the pre-
split partition group to slave status), and express interest in the
external lock associated with its new partition identifier. As
previously noted, this mechanism for splitting a partition may
be extended to allow splits into more than two new partitions
(and corresponding replica groups), in some embodiments. In
such embodiments, in order for the split to succeed, overlap-
ping failover quorum and write quorum requirements
described above may need to be met.

Since the split partition record changes the partition iden-
tifier for both new replica groups, it requires each group to
failover. Note that the slave replicas of the original replica
group may or may not receive the new split record right away.

10

15

20

25

30

40

45

50

55

60

65

48

Therefore, at this point, there are potentially three master
elections that may begin, and that may all be attempted at the
same time. First, since the master of the original partition
identifier has given up the external advisory lock for the
original replica group, any slave replica that has not yet
applied the split record may acquire the external lock for the
original replica group and may attempt to become master for
the original partition. In addition, any slave replica that has
applied the split record and is included in the membership for
the first new replica group may acquire the external lock for
the first new replica group (and the corresponding first new
partition identifier) and attempt to become the master for the
first new replica group. Finally, any slave replica that has
applied the split record and is included in the membership for
the second new replica group may acquire the external lock
for the second new replica group (and the corresponding
second new partition identifier) and attempt to become master
for the second new replica group.

In some embodiments, a slave replica that is attempting to
become master for the original replica group will meet one of
two fates: it will achieve the failover quorum (and become
master for the original partition), or it will discover (while
attempting to fill out the failover quorum) that the split record
exists and be required to synchronize up to it. Discovering the
existence of the split record may cause the replica to abandon
its attempt to become master, since it must now release the
external lock for the original replica group. The replica may
now recognize the new post-split replica group of which it is
amember, and may attempt to acquire the external lock for the
new post-split replica group. If the slave replica succeeds in
becoming master for the old partition identifier, this means
that the split record failed to become durable within the origi-
nal replica group, and is now destined to be snipped away on
any replica that did manage to append it.

In some embodiments, if the split record achieves mini-
mum durability, any slave replica that acquires the external
lock for the original group will be guaranteed to find the split
record when filling out the failover quorum (within the con-
figured fault tolerance). In this case, the split may be guaran-
teed to succeed. However, if the split record does not achieve
durability, and a slave replica fills out the failover quorum
without discovering the split record, the slave replica may
become master for the original replica group, and the slave
replica may redefine the log sequence number that was the
split record with its own epoch change record, or with a
subsequent log sequence number that follows the log
sequence number of the epoch change. In this case, neither
post-split replica group will be able to elect a master because
each of their failover quorums will overlap the quorum used
in electing the master for the original group. This is because
the post-split replica groups are guaranteed not to be able to
elect a master so long as the quorum configuration satisfies
the overlapping quorum requirements described above. Fur-
thermore, during any attempts of the post-split replica group
members to become master for a post-split replica group, the
log conflict will be detected, causing the master hopeful to
snip their log (thus snipping away the split record). This may
resultin the replica reverting back to its old state, including its
interest in the master lock for the original replica group. In
other words, detecting the log conflict may cause the replica
to abandon its attempt to become master, and register its
interest in the original replica group’s master lock again.

As noted above, if either of the post-split groups succeeds
in electing a master, the split may be guaranteed to succeed.
This is because the minimum durability requirement for the
post-split groups is the same as the minimum durability
requirement for the pre-split group, electing a master requires

US 9,367,252 B2

49

at least the minimum durability requirement of replicas to be
caught up to (e.g., to have flushed) the epoch change record,
and the epoch change record occurs after the split record in
the log sequence. In other words, if either post-split group
succeeds in electing a master, it is guaranteed that the split
record was durable in the pre-split replica group. Therefore,
the split itself is guaranteed to succeed. Stated another way,
once master election succeeds for either of the new replica
groups, the split is guaranteed to succeed, since successfully
achieving the failover quorum for either new group satisfies
the durability requirement for the original replica group. In
some embodiments, this process for splitting a partition
works in conjunction with the failover protocol such that
either the split does not become durable (and is snipped away
fairly quickly), or the failover attempts push the split to
completion fairly quickly. In general, the whole failover pro-
cess following a split may be performed roughly as quickly as
a single failover. Note that in some embodiments, this
approach may require that the pre-split and post-split replica
groups meet the quorum overlap requirements described
herein in the same data centers.

Note that catch-up (e.g., hole filling) requests from pre-
split nodes to post-split nodes may in various embodiment
allow a pre-split node to catch up in one of two ways. For
example, if the split is complete, the pre-split node may need
to specify its new partition identifier (which it may obtain
from a heartbeat issued by the new replica group) in its
request, and only members of the correct post-split group can
fulfill this request. On the other hand, if the split is not yet
considered complete, the post-split nodes may recognize that
the request is coming from a pre-split node, and may offer up
log records up to and including the split record. The pre-split
node may then (following the appending of the split record)
be required to make further requests for missing log records to
nodes in its post-split group membership using the new par-
tition identifier for its post-split group.

In some embodiments, heartbeats may carry the partition
identifier(s) of pre-split partitions until the split record
becomes flush stable (at which point it is certain that there are
not any members of the pre-split replica group that are still
behind the split). Any pre-split nodes may note this (e.g., this
may be how they recognize that the heartbeat is meant for
them), and may use the pre-split partition identifiers in sub-
sequent catch-up requests. In some embodiments, a split may
be considered “complete” when both new replica groups have
committed the split record. Each of the new replica groups
may monitor this independently, and may declare the split
complete when it receives confirmation that the split record
has been committed. At that point, a new membership change
record may be propagated to clear the split record, and to
write the new membership record that contains only the post-
split group information, in some embodiments. It may not be
until this point that one of the new groups is allowed to
perform another split.

One embodiment of a method for splitting a replicated
partition is illustrated by the flow diagram in FIG. 24. As
illustrated in this example, the method may include (e.g., in
response to a request to split a partition) the replica acting as
master of a replica in the group initiating the addition of one
or more replicas in the replica group, as in 2410. The method
may include the replica acting as master shipping one or more
membership change log records to the other members of the
replica group, each indicating the addition of a replica in the
group, as in 2420. In some embodiments, each membership
change log record may include an incremented membership
version, as described above.

10

15

20

25

30

35

40

45

50

55

60

65

50

As illustrated in this example, the method may include
determining whether the membership change(s) are durable
and whether the replicas in the expanded replica group are
sufficiently caught up to the most recent log records (as in
2430). If not, e.g., if the membership change log record rep-
lication does not meet the applicable write quorum require-
ments, the method may include the master replica monitoring
responses from the other replicas in the replica group until it
receives sufficient indications that the membership change is
durable. In another example, if there are not at least enough
replicas in the write quorum that are caught up to allow master
elections to be held, the method may include the master
replica monitoring the state of the other replicas (and/or
refusing to accept a request to split the replica group) until at
least the minimum number of replicas are caught up. If the
master replica does receive sufficient indication(s) that the
membership change(s) are durable and that enough replicas
are sufficiently caught up (shown as the positive exit from
2430), e.g., if the membership change log record replication
meets the applicable write quorum requirements, the method
may include the replica acting as master shipping a member-
ship change log record to the other members of the newly
expanded replica group indicating that the expanded replica
group is to split into two new replica groups, as in 2440. In
some embodiments, this membership change log record may
include information indicating which replicas are to be
included in each of the new replica groups, a new partition
identifier for each of the new replica groups, and a new data
range for each ofthe new replica groups. As previously noted,
the techniques described herein for splitting a replica group
may depend on the overlapping quorum requirements
described above.

In some embodiments, subsequent to a membership
change to split a replica group into two new replica groups, a
replica in at least one of the two new replica groups may
attempt to become master of its new replica group, as in 2450.
For example, attempting to become master of the new replica
group may include gathering state information about other
replicas in the new group and determining whether they sup-
port the mastership attempt, as with any other failover opera-
tion. In the example illustrated in FIG. 24, if no attempt to
become master of a new replica group is successful (shown as
the negative exit from 2460), an attempt by one of the replicas
of the expanded replica group to become master of the
expanded replica group may be successful, as in 2470. If it is,
any subsequent attempt by one of the replicas to become
master of one of the new groups will fail. If at least one
attempt to become master of a new replica group is successful
(shown as the positive exit from 2460), any subsequent
attempt by one of the replicas to become master of the
expanded replica group will be unsuccessful, as in 2480. As
previously noted, in some embodiments, a replica group may
be split into more than two new replica groups by a split
membership change. In such embodiments, the techniques
described herein may be applied to expand the original replica
group to a sufficient number of replicas to populate the new
replica groups, and then to split the original replica group into
more than two new replica groups, each of which may then
attempt to elect its own master replica. In such embodiments,
the overlapping quorum requirements described herein may
be applicable to all of the post-split replica groups.

One embodiment of a method for releasing mastership of a
partition when it is split is illustrated by the flow diagram in
FIG. 25. As illustrated at 2510, in this example, the method
may include the master for the expanded replica group ship-
ping a membership change log record to the other members of
the expanded replica group indicating that the group is to split

US 9,367,252 B2

51

into two new replica groups. As in the previous example, the
membership change log record may include information indi-
cating which replicas are to be included in each of the new
replica groups, a new partition identifier for each of the new
replica groups, and a new data range for each of the new
replica groups. As illustrated at 2520, the master may con-
tinue to hold the lock for the expanded group until it has
appended the split log record to its log. After appending the
split log record, the master replica may give up the mastership
of the expanded replica group, and then release the external
lock for the replica group (or the partition that it manages), as
in 2530.

As illustrated in this example, a replica in the expanded
replica group may attempt to become master of the expanded
replica group, as in 2540 (e.g., if it has not received, applied,
or committed the split log record). Attempting to become
master of the expanded replica group may include gathering
state information about other replicas in the expanded replica
group and determining whether they support the mastership
attempt, as with any other failover operation. Ifthis attempt to
assume mastership is not successful (shown as the negative
exit from 2550), the method may include the replica attempt-
ing to become master synchronizing to the split log record,
abandoning its attempt to assume membership of the
expanded replica group, and recognizing its membership in
one of the new replica groups, as in 2570. For example, the
attempt to assume mastership of the expanded replica group
may fail if the split log record is discovered while attempting
to fill the failover quorum. Ifthe attempt to assume mastership
of the expanded replica group is successful (shown as the
positive exit from 2550), an attempt by one of the replicas to
become master of one of the new replica groups will be
unsuccessful, as in 2560. In this case, the split operation will
fail and the split log record will be snipped away from any
replica that appended it to its log stream. As previously noted,
the techniques described herein for splitting a replica group
may depend on the overlapping quorum requirements
described above.

In some embodiments, the storage systems described
herein may implement fault-tolerant log-handling mecha-
nisms by which log conflicts (e.g., log conflicts caused when
logs diverge due to failovers) are detected and resolved. These
mechanisms may rely on the safe replication commit strategy
described herein, i.e. that a master may only commit log
records that it produced during its current master reign. A
commit of a replication log record (using the replication
mechanisms described herein) may be defined by the log
record achieving minimum durability when no other log
record exists that has the same epoch and sequence, but higher
credentials (since the lock generation value indicates the total
ordering of external lock acquisitions through time, with a
higher value indicating a later lock generation). In other
words, this may be the point at which the log record is intrin-
sically committed in the system (i.e. it is guaranteed to sur-
vive), and the only way that a master can be absolutely sure
that alogrecord is intrinsically committed is if it produced the
log record during its current master reign.

Given this understanding, log conflict detection and reso-
Iution may in some embodiments be achieved based on the
performance of a comparison operation that maps up to four
characteristics of log records at the time that a log record is
received (to be appended to the log) to the actions to be taken
in response to receiving the log record. For example, the
comparison operation may examine one or more of:

the relative difference between log sequence number of the

received log record and the most recently appended log
record, i.e. whether the log sequence number of the

10

15

20

25

30

35

40

45

50

55

60

65

52

received log record is less than the log sequence number
of the most recently appended log record, equal to the
log sequence number of the most recently appended log
record, greater than the log sequence number of the most
recently appended log record by one, or greater than the
log sequence number of the most recently appended log
record by more than one

the relative difference between the master epoch of the

received log record and the master epoch of the most
recently appended log record, i.e. whether the master
epoch of the received log record is less than the master
epoch of the most recently appended log record, equal to
the master epoch of the most recently appended log
record, greater than the master epoch of the most
recently appended log record by one, or greater than the
master epoch of the most recently appended log record
by more than one

the relative difference between the lock generation value of

the received log record and the lock generation value of
the most recently appended log record, i.e. whether the
lock generation value of the received log record is less
than the lock generation value of the most recently
appended log record, equal to the lock generation value
ofthe most recently appended log record, or greater than
the lock generation value of the most recently appended
log record

whether or not the incoming log is an “epoch change” log

or not, and if so, whether the previous lock generation
value matches the previous sequence log

In some embodiments, this comparison operation may be
expressed as a function of four parameters with an input
domain of all permutations of the relative values, and a result
range of five directives (or actions that may be taken in
response). In this example, the possible actions may include
accepting the log record for appending to the log, dropping
the log record as moot (e.g., if it is already past the log record
in sequence), caching the log record for the future (e.g.,
saving it so that it may be evaluated when the log sequence
catches up to it), snipping the log (if a log conflict is detected),
or returning an error indication (if an invalid combination of
the input parameter values is detected). For this example, a
matrix of all 96 combinations of these input parameters has
mapped to the appropriate directives (as shown below).

Note that in some embodiments, log conflicts (due to
invalid log branches, etc.) may be detected and resolved dur-
ing failover. For example, a new master hopeful, upon fetch-
ing the log tail, may catch up through the normal append path,
which may result in a log snip. In this case, the new master
hopeful may break out of the catch-up loop, and may iterate to
fetch the log tail again (e.g., in order to retrieve an earlier log
record than it thought it needed prior to the snip). The quorum
peers, upon accepting a log tail (e.g., as part of the replicate
tail step) may similarly catch up to the tail, and may snip the
log as necessary. They may then report their most recently
flushed log record, which may result in iterating the replicate
tail operation from the master beginning at an earlier point in
the log stream. Note that in some embodiments, conflicts may
be detected and resolved outside of the failover process. For
example, the data storage system may check for and resolve
any detected log conflicts as part of processing every append
message, whether or not the append message is received
and/or processed during a failover.

As previously noted, in some embodiments, only a current
and active master may commit log records (LSNs), and in
order to commit a log record, it must be guaranteed that the
log record will always survive. This means that the log record
must meet the durability requirement, and must also have

US 9,367,252 B2

53

greater precedence (i.e. higher credentials) than any other log
record that exists. As discussed above, the only way a repli-
cation group member can be sure that both of these are true is
if (a) the replica produced the record and assigned the prece-
dence (i.e. the LSN credentials) itself based on its current
master authority, and (b) it recognizes that the record meets
the durability requirement while still holding that authority
(i.e. while it is still acting as master in the same master reign,
such that the epoch and lock values of the LSN are still the
latest in existence). Therefore, in some embodiments, a log
record may only be committed by the same master that pro-
duced the log record (and that produced the log record within
the current master reign).

In the failover protocol, this constraint means that a dis-
covered tail may be replicated, but not committed. This may
be acceptable, however, since at the point at which the new
master is able to commit a new log that it produced, all log
records leading up to that point will be fully resolved. The
failover protocol may ensure that the log tail catch-up process
correctly resolves the log based on the guarantee that it will
find that committed log, and the committed log will have a
higher authority than any other log in existence prior to the log
being committed. While it may be acceptable (in some
embodiments) for this to log to carry data, this commit may be
ensured to happen at the time of the failover by requiring the
epoch change LSN to commit before accepting new writes. In
other embodiments, this may not be required.

In some embodiments, a log conflict detection class may be
a static class for which the instances are configured to assess
the LSN stream. In other words, it may be in these instances
that log conflicts are detected, and in which all snip log cases
are defined. The logic of the assessment function (e.g., the
comparison operation described above) may be based on the
core invariants provided by the failover protocol, and the
external lock service. The logic for assessing the LSNs in a
log stream may be relatively straight-forward when examin-
ing LSNs that are all part of the one valid log stream. How-
ever, the replication systems described herein may be
designed to be fault tolerant. Therefore, all of the cases in
which failovers occur that do not include some member or
members of the one valid log stream may have to be recon-
ciled with the member(s) view of the world once they return.
One strategy to deal with this is to immediately remove any
nodes that do not participate in a failover from the replica
group, and require them to re-join when they come back. As
noted above, this strategy may put the system at a higher risk
of multiple failures, causing the system to lose quorum, espe-
cially if the system includes a very large number of small
replication groups (e.g., groups that consist of three replicas
each most all of the time, as in many of the examples
described herein). In addition, as discussed in more detail
below, it may take a lot of time and effort to achieve all of the
failovers and/or re-joins that may be required following a
widespread outage if the system includes a very large number
of small replication groups. In embodiments that do not
remove members from replica groups for not participating in
a master election, the system may be forced to deal with log
branching.

In one embodiment, the log stream assessment mechanism
may work as follows. A received LSN may be compared to the
current LSN (i.e. the most recently appended LSN), and
several comparison values may be produced (e.g., one for
each of the LSN components: epoch, sequence number, and
lock generation id). These comparison values may be consid-
ered enums (although they may or may not be represented as
enums in the comparison code). In addition to being depen-
dent on these three comparison values, the output of the

10

15

20

25

30

35

40

45

50

55

60

65

54

assessment function may in some cases be dependent on a flag
that marks a new epoch change L.SN.

As noted above, the comparison value for the sequence
comparison may indicate that the received LSN sequence
value is one greater than the current LSN sequence value
(resulting in a comparison value of PLUSPLUS), that the
received LSN sequence value is more than one greater than
the current LSN sequence value (resulting in a comparison
value of GTPP), that the received LSN sequence value is the
same as the current LSN sequence value (resulting in a com-
parison value of EQUAL), or that the received LSN sequence
value is less than the current LSN sequence value (resulting in
a comparison value of LESS). Similarly, the comparison
value for the epoch value comparison may indicate that the
received LSN epoch value is one greater than the current LSN
epoch value (resulting in a comparison value of PLUSPLUS),
that the received LSN epoch value is more than one greater
than the current LSN epoch value (resulting in a comparison
value of GTPP), that the received LSN epoch value is the
same as the current LSN epoch value (resulting in a compari-
son value of EQUAL), or that the received LSN epoch value
is less than the current LSN epoch value (resulting in a com-
parison value of LESS).

In some embodiments, the comparison value for the lock
comparison may have fewer possible values. In this example,
the comparison value for the lock comparison may indicate
that the received LSN lock value is greater than the current
LSN lock value (resulting in a comparison value of
GREATER), that the received LSN lock value is the same as
the current LSN lock value (resulting in a comparison value of
EQUAL), or that the received LSN lock value is less than the
current LSN lock value (resulting in a comparison value of
LESS). In some embodiments, the value of the new epoch flag
may indicate that the received LSN is marked as a “new
epoch” LSN (in which case the flag may be set, or “true”), or
may indicate that the received LSN is not marked as a “new
epoch” LSN (in which case the flag may be clear, or “false”).

In this example, all assessments are made based on these
four pieces of data, and all 96 combinations of these values
may result in a definitive action to be taken in response to
receiving a log record. In this example, the possible actions
that may be taken are:

ADVANCE: append the received LSN—it is the next LSN

in the LSN stream

EPOCH: append the received LSN—it is the next LSN in

the LSN stream (and it also changes the epoch)

DROP: drop the received LSN—it is in the past (it has

already been processed or has been superseded)

OOC: cache the received LSN—it is in the future (i.e. it

was received out of context), and may be needed later

SNIP: snip the log (and then re-assess the received log

record)—the comparison indicates that the log sequence
was on an invalid branch

ASSERT: return an error—the combination of parameter

values of the received LSN are invalid (e.g., the failover
protocol has been broken)

The assessment function (and/or the comparison opera-
tions thereof) may depend on the replication protocol and
external lock service guarantees provided in the system, as
expressed in the lemmas and theorems outlined below (for
this example). The sequence terminology described earlier
may be assumed in these lemmas and theorems.

The following lemmas may be valid for the example log
detection and resolution function described herein:

Lemma 1: In a given stream branch, the epoch and lock

always increase together. That is, epoch(LSN,)>epoch
(LSN,) if and only if lock(LSN,)>lock(LSN,) and also

US 9,367,252 B2

5§
lock(LLSN |)>lock(LLSN,,) if and only if epoch(LSN,)>
epoch(LSN,,). Further, if lock(LSN,)=lock(LSN,) then
epoch(LSN,)=epoch(LSN,), and vice versa. This is
given by the failover protocol.

Lemma 2: In order to have an LSN of epoch E, all valid
LSN’s of epoch E-1 must first be verified as durable.
This is given by the failover protocol.

Lemma 3: Committed [LSNs are always included in the
valid log stream during failover. This is given by the
failover protocol.

Lemma 4: In order to have an LSN of epoch E that is not an
epoch change L.SN, the epoch change L.SN for epoch E
must first be committed. This is given by the failover
protocol.

Lemma 5: A unique lock generation is used for each master
reign. This is given by the failover protocol.

Lemma 6: Only one lock generation may be active at one
time. This guarantee may be provided by the external
lock service.

Lemma 7: For an external Lock L, if there are lock acqui-
sition times of T1, T2, and T1<T2, then lock generation
Lock(T1)<Lock(T2). This guarantee may be provided
by the external lock service.

The following theorems have been proven for the example

log detection and resolution function described herein, but are
not shown:

10

15

20

56

Theorem 1: If LSN, and LSN, reside in two different
stream branches, and epoch(LSN)>epoch(LSN,,), then
lock(LLSN,) '=lock(LLSN,).

Theorem 2: If LSNs with different locks are created in a
stream branch without any other branch creating an LSN
in-between, all LSNs of the first of the two locks must be
committed.

Theorem 3: If LSN, and LSN, reside in two different
stream branches, and epoch(LLSN,)>epoch(LSN,), then
lock(LSN,)>lock(LSN,).

Theorem 4: If epoch(LSN,)=epoch(LSN,), and lock
(LSN)<lock(LSN,), then sequence(L.SN,)<=sequence
(LSN,).

Theorem 5: If epoch(LSN,)=epoch(LSN,), and lock
(LSN)) !=lock(LLSN,), and sequence(L.SN,)=sequence
(LSN,), then LSN, is an epoch change LSN.

Theorem 6: If sequence(LSN,)<sequence(LSN,), epoch
(LSN))=epoch(LLSN,), and SN, is marked as an epoch
change LSN, then lock(LSN,) !=lock(LSN,).

Theorem 7: iflock(LSN|)>lock(LSN,,),and LSN, isnotan
epoch change L.SN, then epoch(LL.SN,) !=epoch(LL.SN,,).

The example log conflict detection function may be illus-

trated by the following pseudo code, according to one
embodiment.

public class LogConflictDetection

{

// Possible actions dictated by an assessment

I
enum Action

{

DROP, // duplicate delivery, etc.

ADVANCE, // normal steady state advancement case - only one case results in this action
EPOCH, // epoch change advancement case - only one case results in this action

0O0C, // future log - “out of context”. The stream leading up to this LSN must be filled in

SNIP, // log conflict detected (and replica is on the invalid branch) - log should be snipped
ASSERT // a case that should be impossible - therefore, assert error

}

// Comparisons are: received LSN is __ when compared to current LSN (most recently

// submitted LSN)

I

// Valid values for sequence : LESS, EQUAL, PLUSPLUS, GTPP
// Valid values for epoch : LESS, EQUAL, PLUSPLUS, GTPP

// Valid values for lock : LESS, EQUAL, GREATER

// Valid values for newEpoch : EPOCH, FALSE

I

static int GREATER = 0; // > - strictly greater

static int GTPP = 0; // >> - more than one greater (greater than plusplus)
static int EQUAL = 1; // == - exactly the same

static int LESS = 2; // < - strictly less

static int PLUSPLUS = 3; // ++ - one greater

static int EPOCH = 0; // newEpoch

static int FALSE = 1; // tnewEpoch

static Action[][][][] matrix = new Action[4][4][3][2];

I
I
static

matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matri
matri
matrix
matrix
matrix
matrix
matrix

oA

PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS
PLUSPLUS

currentL.SN —> receivedLSN
// seq epoch lock newEpoch
EQUAL][EQUAL][EPOCH] = Action. ASSERT; // ++ ==

1
EQUAL][EQUAL][FALSE] = Action. ADVANCE; // ++ == ==
EQUAL][GREATER][EPOCH] = Action.SNIP; // ++==>T
1l
i

EQUAL|[GREATER][FALSE] = Action.SNIP; // ++ == > F
EQUAL][LESS][EPOCH] = Action. ASSERT; // ++ == <T
EQUAL][LESS][FALSE] = Action. ASSERT; // ++ == < F
PLUSPLUS]|[EQUAL][EPOCH] = Action. ASSERT; // ++ ++ ==
PLUSPLUS][EQUAL][FALSE] = Action. ASSERT; // ++ ++ ==
PLUSPLUS]|[GREATER][EPOCH] = Action EPOCH; // ++ ++ > T
PLUSPLUS][GREATER][FALSE] = Action.SNIP; // ++ ++ > F
PLUSPLUS][LESS][EPOCH] = Action. ASSERT; // ++ ++ < T
PLUSPLUS][LESS][FALSE] = Action. ASSERT; // ++ ++ <F
GTPP][EQUAL][EPOCH] = Action. ASSERT; // ++ >> ==
GTPP][EQUAL][FALSE] = Action. ASSERT; // ++ >> ==
GTPP|[GREATER][EPOCH] = Action.SNIP; // ++ >> > T
GTPP|[GREATER][FALSE] = Action.SNIP; // ++ >>>F

US 9,367,252 B2
57

-continued

matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix

PLUSPLUS][GTPP][LESS][EPOCH] = Action. ASSERT; // ++ >>< T
PLUSPLUS][GTPP][LESS][FALSE] = Action. ASSERT; // ++ >> <F
PLUSPLUS][LESS][EQUAL][EPOCH] = Action. ASSERT; // ++ < ==T
PLUSPLUS][LESS][EQUAL][FALSE] = Action. ASSERT; // ++ < ==
PLUSPLUS][LESS][GREATER][EPOCH] = Action. ASSERT; // ++ <> T
PLUSPLUS][LESS][GREATER][FALSE] = Action. ASSERT; // ++ <> F
PLUSPLUS][LESS][LESS][EPOCH] = Action.DROP; // ++ <<T
PLUSPLUS][LESS][LESS][FALSE] = Action.DROP; // ++ < <F
EQUAL][EQUAL][EQUAL][EPOCH] = Action. DROP; // =
EQUAL][EQUAL][EQUAL][FALSE] = Action. DROP; //
[GREATER][EPOCH] = Action.SNIP; // =
[

[

]
matrix[EQUAL][EQUAL]
matrix[EQUAL][EQUAL][GREATER][FALSE] = Action. ASSERT; // =
matrix[EQUAL][EQUAL][LESS][EPOCH] = Action.DROP; // == == < T
matrix[EQUAL][EQUAL][LESS][FALSE] = Action. ASSERT; // == == <F

matrix[EQUAL][PLUSPLUS][EQUAL][EPOCH] = Action. ASSERT; // == ++ ==

matrix[EQUAL][PLUSPLUS][EQUAL][FALSE] = Action.ASSERT; // == ++ ==F
matrix[EQUAL][PLUSPLUS][GREATER][EPOCH] = Action.SNIP; // == ++ > T
matrix[EQUAL][PLUSPLUS][GREATER][FALSE] = Action.SNIP; // == ++ > F
matrix[EQUAL][PLUSPLUS][LESS][EPOCH] = Action.ASSERT; // == ++ <T
matrix[EQUAL][PLUSPLUS][LESS][FALSE] = Action.ASSERT; // == ++ <F
matrix

matrix[EQUAL][GTPP][EQUAL][FALSE] = Action. ASSERT; // == >> ==

matrix
matrix
matrix

EQUAL][GTPP]
EQUAL][GTPP]
EQUAL][GTPP]

GREATER][EPOCH] = Action.SNIP; // ==>>>T
GREATER][FALSE] = Action.SNIP; // == >>>F
LESS][EPOCH] = Action.ASSERT; // ==>><T

I
I
I
I
I
I
I
I
I
I
I
EQUAL][GTPP][EQUAL][EPOCH] = Action. ASSERT; // == >>=="T
Il
Il
Il
Il
Il
I
I
I
I
I

matrix[EQUAL][GTPP][LESS][FALSE] = Action. ASSERT; // == >> <F
matrix[EQUAL][LESS][EQUAL][EPOCH] = Action. ASSERT; // == < ==
matrix[EQUAL][LESS][EQUAL][FALSE] = Action. ASSERT; // == < ==
matrix[EQUAL][LESS][GREATER][EPOCH] = Action. ASSERT; // == <> T
matrix[EQUAL][LESS|[GREATER][FALSE] = Action. ASSERT; // == < > F
matrix[EQUAL][LESS][LESS][EPOCH] = Action.DROP; // == < <T
matrix[EQUAL][LESS][LESS][FALSE] = Action.DROP; // == < < F
matrix[GTPP][EQUAL][EQUAL][EPOCH] = Action. ASSERT; // >> == ==
matrix[GTPP][EQUAL][EQUAL][FALSE] = Action.O0C; // >> == == F
matrix[GTPP][EQUAL][GREATER][EPOCH] = Action.SNIP; // >> == > T
matrix[GTPP][EQUAL][GREATER][FALSE] = Action.SNIP; // >> == > F
matrix[GTPP][EQUAL][LESS][EPOCH] = Action. ASSERT; // >> == < T
matrix[GTPP][EQUAL][LESS][FALSE] = Action. ASSERT; // >> == <F
matrix[GTPP][PLUSPLUS][EQUAL][EPOCH] = Action. ASSERT; // >> ++ ==
matrix[GTPP][PLUSPLUS][EQUAL][FALSE] = Action. ASSERT; // >> ++ ==

matrix
matrix
matrix
matrix
matrix
matrix
matrix
matrix
matri;

GTPP][PLUSPLUS
GTPP][PLUSPLUS
GTPP][PLUSPLUS
GTPP][PLUSPLUS][LESS][FALSE] = Action.ASSERT; // >> ++ <F

[

[

[

[

[

i

[GREATER][EPOCH] = Action.OOC; // >> ++>T
[
i

GTPP][GTPP][EQUAL][EPOCH] = Action. ASSERT; // >> >> ==

[
[
[
[
[
[
[
[
[
[
[

[
[
[GREATER][FALSE] = Action.00C; // > ++ > F
[LESS][EPOCH] = Action. ASSERT; // >> ++ < T

GTPP][GTPP|[EQUAL][FALSE] = Action. ASSERT; // >> >> ==
GTPP|[GTPP
GTPP|[GTPP
GTPP|[GTPP
GTPP|[GTPP
GTPP][LESS][
GTPP][LESS][

GTPP][LESS][GREATER][EPOCH] = Action. ASSERT; // >> <> T
GTPP][LESS][GREATER][FALSE] = Action. ASSERT; // >>< > F
[
[

L

[GREATER][EPOCH] = Action.OOC; // >>>>>T
[GREATER][FALSE] = Action.OOC; // >> >>>F
[
L

=

LESS][EPOCH] = Action.ASSERT; // >> >> < T
matri LESS][FALSE] = Action.ASSERT; // >>>> <F
matrix

matrix

=

EQUAL][EPOCH] = Action.ASSERT; // >> < ==
EQUAL][FALSE] = Action.ASSERT; // >> < ==
matrix
matrix
matrix

GTPP][LESS][LESS][EPOCH] = Action.DROP; // >> < <T

GTPP][LESS][LESS][FALSE] = ActionDROP; // >> < < F

LESS][EQUAL][EQUAL][EPOCH] = Action DROP; // < == ==

LESS][EQUAL][EQUAL][FALSE] = Action. DROP; // < ==

LESS][EQUAL][GREATER][EPOCH] = Action. ASSERT; // < == >T

LESS][EQUAL][GREATER][FALSE] = Action. ASSERT; // < == > F
1

matrix
matrix
matrix

F
matrix
matrix
matrix[LESS][EQUAL][LESS][EPOCH] = Action.DROP; // < ==<T
matrix
matrix
matrix

LESS][EQUAL][LESS][FALSE] = Action. ASSERT; // < == < F
LESS][PLUSPLUS][EQUAL][EPOCH] = Action. ASSERT; // < ++ ==
LESS][PLUSPLUS]|[EQUAL][FALSE] = Action. ASSERT; // < ++ == F
LESS][PLUSPLUS]|[GREATER][EPOCH] = Action.SNIP; // < ++ >T
LESS][PLUSPLUS][GREATER][FALSE] = Action.SNIP; // < ++ > F
LESS][PLUSPLUS][LESS][EPOCH] = Action. ASSERT; // < ++ < T

1l
1l
1l
1l
1l
1l
1l
1l
matrix 1
1l
1l
LESS][PLUSPLUS][LESS][FALSE] = Action.ASSERT; // < ++ <F

1l
1l
1l
1l
1l
1l
1l
1l
1l
1l

matrix
matrix
matrix
matrix
matrix

LESS][GTPP][EQUAL][EPOCH] = Action.ASSERT; // < >> ==
LESS][GTPP][EQUAL][FALSE] = Action.ASSERT; // < >> ==
matrix
matrix
matrix

[
LESS][GTPP][GREATER]|[EPOCH)] = Action.SNIP; // <>> > T
LESS][GTPP][GREATER][FALSE] = Action.SNIP; // < >> > F
LESS][GTPP][LESS][EPOCH] = Action. ASSERT; // < >>< T

[

matrix[LESS][GTPP][LESS][FALSE] = Action.ASSERT; // <>> <F

matrix

matrix[LESS][LESS][EQUAL][EPOCH] = Action. ASSERT; // << ==T

matrix[LESS][LESS][EQUAL][FALSE] = Action. ASSERT; // < <==

matrix[LESS][LESS][GREATER][EPOCH] = Action. ASSERT; // < <> T
1L

LESS][LESS][GREATER][FALSE] = Action.ASSERT; // <<>F

58

US 9,367,252 B2

59

-continued

60

matrix[LESS][LESS][LESS][EPOCH] = Action.DROP; // < <<T
matrix|[LESS][LESS][LESS][FALSE] = Action.DROP; // < < <F

s

* Return the necessary action to perform based on the most recently submitted (appended)

* LSN, the newly received LSN (for append),
* and whether the received LSN is marked as an epoch change LSN.
*/

public static Action assess(LSN currentL.SN, LogEntry incomingl.og, boolean newEpoch)

{

LSN receivedLSN = incomingl.og.getL.SN();

int sequenceCompare = receivedLSN.seq == currentLSN.seq + 1 ? PLUSPLUS :

receivedLSN.seq > currentLSN.seq + 1 ? GTPP :

receivedLSN.seq == currentLSN.seq ? EQUAL : LESS;
int epochCompare = receivedLSN.epoch == currentLSN.epoch ? EQUAL :
receivedLSN.epoch == currentL.SN.epoch + 1 ? PLUSPLUS :
receivedLSN.epoch > currentLSN.epoch + 1 ? GTPP : LESS;
int lockCompare = receivedL.SN.lock == currentLSN.lock ? EQUAL :
receivedLSN.lock > currentl.SN.lock ? GREATER : LESS;

int newEpochCompare = newEpoch ? EPOCH : FALSE;
Action verdict =

matrix[sequenceCompare][epochCompare][lockCompare][newEpochCompare];
// Epoch change is ambiguous with parallel branch transitions if lsn.epoch and lsn.seq line

// up (see AMBIGUOUS_EPOCH__CHANGE)

// So, verify the transition is correct by inspecting and comparing the previous lock with that

// of the current LSN. If not

// a match, then it is the parallel branch scenario, and is actually a snip case

if(verdict == Action. EPOCH)

if(incominglog.getPriorLock() != currentLSN.lock)
verdict = Action. SNIP;

return verdict;

One embodiment of a method for detecting and resolving
log conflicts in a data storage system is illustrated by the flow
diagram in FIG. 26. As illustrated at 2610, in this example, the
method may include a slave replica in a replica group receiv-
ing a log record to be appended to its log stream and metadata
related to the log record. The method may include the slave
replica comparing the metadata related to the received log
record with metadata related to one or more previously
appended log records, as in 2615. If the comparison indicates
that the log stream of the slave replica should be snipped
(shown as the positive exit from 2620), e.g., if a conflict is
detected in the compared data that indicates the log stream of
the slave replica is on an invalid branch, the method may
include snipping the log stream of the slave replica at the point
of the detected conflict (as in 2625), and then beginning the
comparison operation again (shown as the feedback from
2625 back to 2615). Note that in this case, the log stream of
the slave replica may be caught up with the valid stream later
(e.g., during a subsequent failover operation), in some
embodiments.

If the comparison indicates that the received log record is
the next log record that should be appended to the log stream
(shown as the positive exit from 2630), the method may
include appending the received log record to the log stream,
as in 2635. For example, one of the comparisons that takes
place may determine whether the log sequence number is next
in the log sequence with respect to the log sequence numbers
of the log records already appended in the log (e.g., if it is
greater than the log sequence number of the most recently
appended log record by one). If so, in some cases, the log
record may be appended to the log stream. In some embodi-
ments, if a flag indicating whether the log record is associated
with an epoch change is set (or true), the log record appended
to the log stream may indicate the epoch change.

35

40

45

50

55

60

65

If the comparison does not indicate that the received log
record should be appended to the log stream (shown as the
negative exit from 2630), but the comparison indicates that
the received log record should be dropped, shown as the
positive exit from 2640, the method may include dropping the
log record, as in 2645. For example, one of the comparisons
that takes place may determine whether the log record is a
duplicate log record or a log record that has been superseded.
If the comparison does not indicate that the received log
record should be dropped, but the comparison indicates that
the received log record should be cached as a potential future
addition to the log stream (shown as the positive exit from
2650), the method may include caching the received log
record as a potential future addition to the log, as in 2655. For
example, one of the comparisons that takes place may deter-
mine whether the log sequence number of the received log
record is not next in sequence, such as if the difference
between the log sequence number of the received log record
and the log sequence number of the most recently appended
log record is greater than one. If so, in some cases, the log
record may be cached for potential future use. In some
embodiments, a cached log record may be applied later (e.g.,
in sequence order), unless a different branch is taken, the
replica is dropped from group, or another situation or state
change prevents it being subsequently appended to the log.
Note that if none of the comparisons described above are true
(shown as the negative exits from 2620, 2630, 2640, and
2650), the system may be in an invalid state, as in 2660, and
anerror may be returned. This may correspond to the situation
in which the “ASSERT” action is taken in the example pseudo
code above (e.g., in response to a combination of metadata
comparison results that should not be possible in the data
storage system).

US 9,367,252 B2

61

In some embodiments, log branching (and/or the need for
various techniques to detect and resolve the resulting log
conflicts) may be avoided through post-failover rejoins. In
some such embodiments, log branching may be avoided
entirely by removing members of a replica group that do not
participate in a failover election from the replica group, and
then replacing them with new members. In some such
embodiments, the replicas that were removed may rejoin
using the same mechanisms with which any new replica joins
a replica group. This alternative approach may be much sim-
pler to implement than the approach described above, but may
add risk. For example, it may be considered too risky to
implement this alternate approach in a system like that runs
10s to 100s of thousands (or even millions) of replication
groups due to the time and expense of performing multiple
re-join operations for many different failovers. For example,
the time and effort required for the removed replica group
members to rejoin the replica group may affect the durability
model of the system, and/or the availability of the system
and/or the data maintained thereby. In the case of a large scale
event, such as a data center outage, the system would have to
work through many, many failovers at the same time and
process a very large number of re-join operations to return the
system to a stable state. However, it may be reasonable to
implement this alternate approach for single replicated data-
bases or in other replicated storage systems on a relatively
small scale.

Another embodiment of a method for filling out a failover
quorum is illustrated by the flow diagram in FIG. 27. As
illustrated in this example, the method may include a replica
in a replica group initiating an attempt to become the master
for the replica group, as in 2710. The method may include the
replica that is attempting to become the master replica acquir-
ing the external lock associated with the replica group and/or
with the data partition it manages, as in 2720. As described
above, the method may include the replica that is attempting
to become the master replica gathering state information from
another replica in the replica group, as in 2730.

As illustrated in this example, if the other replica supports
this mastership attempt (shown as the positive exit from
2740), the method may include adding the other replica to the
failover quorum, as in 2750. On the other hand, if the other
replica does not support this mastership attempt, the other
replica is not added to the failover quorum, but may be
retained in the replica group and may be included in a subse-
quent attempt to reach a failover quorum (whether or not the
current attempt is successful). As illustrated in this example,
the replica attempting to become the master replica may
continue gathering state information from other replicas in
the replica group until the failover quorum is reached (or until
a timeout period expires, or until it is clear that the failover
quorum cannot be reached, in different embodiments). This is
illustrated in FIG. 27 by the feedback from 2740 to 2730.

In the example illustrated in FIG. 27, once the failover
quorum is met, shown as the positive exit from 2760, any
replicas that did not support the attempt to become master of
the replica group may be removed from the replica group (as
in 2765), and the failover process may continue. In this
example, the method may include the replica that is attempt-
ing to become the master replica for the replica group fetching
any missing tail of the log stream that is found within one of
the other replicas in the quorum (now the modified replica
group), as in 2770. If such a tail is found, the method may
include the replica that is attempting to become the master
replica catching up to the tail and replicating it (e.g., sending
its log records to the other replicas in the group in one or more
“append” messages). The replica attempting to become the

35

40

45

55

62

master may then write the first log record of a new epoch (an
epoch in which it is the master replica), as in 2780. When this
log record is durable, the replica attempting to become the
master replica may commit the now-replicated tail. As illus-
trated in this example, the replica that is attempting to become
the master may at that point assume mastership for the modi-
fied replica group (e.g., the replica group from which one or
more replicas may have been dropped), as in 2790. Note that,
in some embodiments, by dropping any replicas that are not
included in the failover quorum from the replica group,
invalid branches in the log stream may be avoided, and the
techniques described herein for detecting and resolving such
conflicts in the log stream may not be necessary. Also note
that in some embodiments, a replica that is dropped from the
replica group may rejoin the replica group at a later time.
Rejoining the replica group may include discarding the state
of the dropped replica and then synchronizing the replica to
the replicas in the quorum from scratch (as with any operation
to add a new replica to a replica group).

As described herein, in some embodiments, a data storage
system may employ a master/slave replication system with
fault tolerance based on a quorum scheme in which write
quorums overlap with failover synchronization quorums to
ensure that following a change in mastership, all acknowl-
edged writes have been found. In some embodiments, the data
storage system may be designed to utilize an external lock
manager or lock service (e.g. a distributed lock manager) to
safely manage the global view of the system, including a view
indicating which replica of a replication group is allowed to
function as master at any given time. In such embodiments,
the distributed lock manager may ensure, through a lease
mechanism, that one, and only one, replica is ever acting as
the master for each replication group at any given time. The
master replica of the replication group may be the only replica
that may master new write requests made to the system and
directed to the replication group, and may also serve consis-
tent read requests being made to the system and directed to the
replication group. This approach may work well in systems in
which the distributed lock manager will remain available to
the replicas, or in systems in which it is acceptable for a given
replication group to be unavailable for short periods of time.
For example, if the external lock manager becomes unavail-
able, then all replication groups may become masterless (and
thus unavailable for both writes and consistent reads) as soon
as their master leases expire (e.g., within a few seconds, in
some systems). The alternate approaches described below
may allow both writes and consistent reads to continue in the
event that an external lock manager or service that is used to
establish mastership becomes unavailable.

A steady state view of the system may be defined as a state
during which a single master replica coordinates writes to the
slave replicas in its replica group, and acknowledges the
writes when (and if) a quorum of the slave replicas report
having persisted them. In some embodiments, during this
steady state view, consistent read operations may only be
served by the master replica, since the master has been the
only replica mastering writes.

In some embodiments, if the master replica fails, the steady
state view may cease to function, and a view change may be
required in order to resume steady state operations. The view
change may involve selecting a new master, issuing it new
master credentials that compare greater than any previous
master credentials in existence (i.e. credentials that are the
highest credentials known to any replica in the replica group),
and synchronizing the new master with a quorum of the
surviving replicas that overlaps all previous write quorums
used by the previous master. In some embodiments, the view

US 9,367,252 B2

63

change may also involve ensuring that all previous writes
satisfy a write quorum that utilizes only the surviving repli-
cas.

In some embodiments, in order to implement such a view
change, the system may utilize a consensus mechanism that
selects a new master replica candidate, and assigns it a new
credential that is higher (e.g., that compares greater) than any
previous credential in existence. In some such embodiments,
an external lock manager may be utilized for this purpose.
Once the new master candidate and credentials are selected,
the new master candidate may acquire the failover quorum,
and may synchronize with the quorum according to the appli-
cable failover protocol (e.g., the failover quorum described
herein). In some embodiments, in order to determine when a
view change is required, a failure detection mechanism may
also be required. In some embodiments, an external lock
manager may be utilized for this purpose as well. For
example, the external lock manager may maintain a lease
with the master replica in order to maintain that only one
replica is acting as master for the steady state view at any
single point in time.

One embodiment of a method for employing an external
service or manager (e.g., a lock service or lock manager) to
select a master replica for a replica group is illustrated by the
flow diagram in FIG. 28. As illustrated at 2810, in this
example, the method may include one or more replicas in a
replica group expressing interest in assuming the role of
master for the replica group to an external service or manager
(e.g., alock service or lock manager). The external service or
manager may select one of the interested replicas to as a
candidate to assume the role of master, may grant a lock for
the group to the master candidate, and may assign the highest
known credentials to the master candidate, as in 2820. For
example, the external service or manager may assign the
appropriate sequence number, lock generation identifier and/
orepoch identifiers to the master candidate to ensure that only
one replica has highest credentials (e.g., by incrementing one
or more of these elements of the master credentials each time
it selects a new master candidate). In some embodiments, the
external service or manager may associate a lock with each
replica group that can be held by at most one replica at a time.
In other embodiments, another mechanism may be employed
by the external service or manager to ensure that only one
replica is a valid master at a time. Note that a change of
mastership may be initiated due to the failure of the master
replica (or the computing node on which it is hosted), a loss of
communication between the master replica and the external
service or manager, or another reason, in different embodi-
ments.

As illustrated at 2830, in this example, the method may
include determining whether the master candidate succeeds
in building a quorum that supports its attempt to become
master replica, as described herein. If not, shown as the nega-
tive exit from 2830, the method may include the master can-
didate again expressing its interest in assuming the role of
master replica, as in 2835. The external service or manager
may again select one of the interested replicas to assume the
role of master (either the original master candidate or a new
master candidate). In other words, the method may include
repeating the operations illustrated in 2820-2835 for various
interested replicas until one is successful in building a quo-
rum of replicas that support the attempt to become master
replica. This is illustrated by the path from the negative exit of
2830 to 2835, and from 2835 back to 2820. If the master
candidate succeeds in building a quorum that supports its
attempt to become master replica, shown as the positive exit
from 2830, the master candidate may assume the role of

20

30

40

45

64

master for the replica group, and may begin servicing writes
and consistent reads directed to the replica group, as in 2840.
In some embodiments, write operations may employ a write
quorum (as described herein), and consistent reads may
always be serviced by the master replica, since it is the only
replica in the group known to have a consistent view of the
data maintained by the replica group.

In some embodiments, a lease may be applied primarily to
manage consistent read operations. For example, in systems
in which write operations use a quorum scheme, the write
operations may be made safe without the need for a lease.
Consistent reads may similarly be made safe without a lease
if they required acquiring quorum as a prerequisite to
responding successfully to the consistent read. However, this
would decrease system performance, since acquiring quorum
is an expensive operation that would need to be performed in
addition to each read. Note that, in general, write operations
cannot avoid the expense of acquiring a quorum because all
write operations must be performed on all replicas. In con-
trast, consistent read operations may be performed only on
the master, e.g., as long as it is certain that there is only one
master. On the other hand, as described in reference to FIG.
17B, eventually consistent read operations may be served by
any replica in the appropriate replica group. In some embodi-
ments, the use of a lease may ensure that there is only one
master at all times regardless of network partitions, etc., that
may cause false positives in the failure detector.

In some systems that rely on an external lock manager for
master leases, the system may also utilize the external lock
manager for maintaining the steady state view for master
writes. For example, in order to maintain a lease, a heart-beat
mechanism may be employed between the external lock man-
ager and the current master replica, such that the lease is
continued or renewed periodically as long as the external lock
manager and the master replica remain in communication
with each other and no other replica assumes the role of
master replica for the replica group. In some embodiments, if
the lease is lost, the mastership for both consistent read opera-
tions and write operations may be given up. While this strat-
egy may have the advantage of simplicity, it may also have the
disadvantage that if the external lease mechanism fails or
otherwise becomes unavailable, the master may be lost, and
the steady state view may cease to function. In some embodi-
ments, since this lease mechanism may be this same mecha-
nism that provides consensus for selecting the next master
and its new credentials, it may not be possible to establish a
new steady state view if the external lease mechanism fails or
otherwise becomes unavailable. This may lead to a service
outage. The “blast radius” (i.e. the affected range) of such a
service outage may include all master/slave views that were
utilizing the failed lease manager, which may be unacceptable
in some systems.

One embodiment of a method for employing a heart-beat
mechanism between an external service or manager (e.g., a
lock service or lock manager) and a master replica for a
replica group is illustrated by the flow diagram in FIG. 29. As
illustrated in this example, the method may include a master
candidate receiving a lease from an external service or man-
ager, and assuming the role of master for its replica group, as
in 2910. The method may also include the master replica
servicing write operations and consistent read operations that
are directed to the replica group, as in 2920. As illustrated in
this example, the method may include, after a pre-determined
time period, the master replica sending a heart-beat message
to the external service/manager, as in 2930. In other words,
the new master may begin a heart-beat process with the exter-
nal service/manager in order to maintain (or periodically

US 9,367,252 B2

65

renew) the lease. In such embodiments, the heart-beat time
period may be less than the lease period.

As illustrated in FIG. 29, if the new master receives a new
(or renewed) lease from the external service/manager in
response to sending the heart-beat message (shown as the
positive exit from 2940), the method may include repeating
the operations illustrated at 2920-2940 as long as the new
master continues to receive new leases in response to the
heart-beat message. If the new master does not receive a new
(or renewed) lease from the external service/manager in
response to sending the heart-beat message (shown as the
negative exit from 2940), the method may include the master
losing its lease, and no longer servicing the write operations
and consistent read operations that are directed to the replica
group, as in 2950. In this case, write operations and/or con-
sistent read operations may not be serviced until another
replica becomes the master replica for the replica group.

As described herein, in some embodiments, write opera-
tions may employ a quorum scheme. In some embodiments,
this mechanism may be leveraged to allow write operations to
continue to be available following the loss of any external
lease mechanism. For example, rather than giving up master-
ship for write purposes when the lease may no longer be
maintained (due to problems with the lease manager, or sim-
ply due to communication issues with the lease manager), the
steady state master may simply continue to act in the role of
master for the replica group so long as enough replicas only
support write quorums for writes mastered by a replica with
the greatest credentials that the replica has ever seen. Since all
write quorums must intersect all failover quorums, if another
replica succeeds in achieving a failover quorum (which may
be a pre-requisite for the replica to become master), then any
previous master will no longer be able to achieve write quo-
rums for writes that it tries to master. Thus, it may be safe for
the new master to emerge without the possibility of having
two replicas attempting to act as masters for write operations
directed to the replica group.

In some embodiments, to enable this approach, the failover
protocol described above may be extended as follows: When
a replica participates in a new failover quorum, it may first
validate that it has never seen a higher master credential or
else may refuse to be part of the quorum. In other words, a
replica cannot support failover quorums for credentials that
are not greater than any it has previously seen, according to
the failover protocol described above. The replica may dura-
bly remember (e.g., persist to disk or write to another type of
persistent memory) the new highest master credential, and
may not be able to respond as a participant in the quorum until
the new highest master credential is durably remembered. At
that point, the replica may agree to reject any attempted write
operation that is mastered under a lesser master credential.

In some embodiments, in order to establish a new master
for a new steady state view, the system may require a consen-
sus mechanism for determining the replica that may be master
next, and its new credentials. The new credentials may be
guaranteed to be greater than any previous master credentials.
Using the protocol described above, once the steady state
view is established, it may be maintained for write operations
without the need to maintain (or even know about) any leases.

One embodiment of a method for continuing to service
write operations when an external service or manager (e.g., a
lock service or lock manager) is unavailable is illustrated by
the flow diagram in FIG. 30. As illustrated in this example, the
method may include a given replica receiving credentials
from an external service or manager, persisting those creden-
tials on the local node (e.g., persisting them to disk or writing
them to another type of persistent memory), and assuming the

40

45

55

66

role of master for its replica group, as in 3010. As illustrated
at 3020, the method may also include the master replica
servicing write operations that are directed to the replica
group, which may include attempting to obtain a write quo-
rum for each of the write operations (as described in detail
herein).

As illustrated in FIG. 30, the master replica may lose com-
munication with the external service/manager (as in 3030).
For example, the external manager/service (or the computing
node or nodes on which it is hosted) may fail, communication
between the master replica and the external service/manager
may fail, or the heart-beat (or the response thereto) may be
lost. However, the master may continue servicing write
operations that are directed to the replica group, which may
include attempting to obtain a write quorum for each of the
write operations, as in 3040. If the write quorum is met for a
given replicated write operation (shown as the positive exit
from 3050), the method may include committing that write
operation in the data store, as in 3055. If the write quorum is
not met for a given replicated write operation (shown as the
negative exit from 3050), that write operation may not be
committed in the data store, as in 3060.

As illustrated in this example, if no other replica has seen
higher credentials than those held by the current master
(shown as the negative exit from 3070), the method may
include repeating the operations illustrated as 3040-3070. In
other words, until another replica sees (or holds) higher cre-
dentials than those that were assigned to the given replica at
3010, the given replica may continue to act as master for the
replica group, and may continue to service write operations
directed to the replica group (committing those for which a
write quorum is achieved). However, if (at any point) another
replica sees (or holds) higher credentials than the current
master (i.e. credentials higher than those that were assigned to
the given replica at 3010), the given replica may give up
mastership of the replica group and may no longer service
write operations that are directed to the replica group. This is
illustrated in FIG. 30 by the negative exit from 3070, and
element 3080.

Another embodiment of a method for continuing to service
write operations when an external service or manager (e.g., a
lock service or lock manager) is unavailable is illustrated by
the flow diagram in FIG. 31. As in the previous example, the
method may include a given replica receiving credentials
from an external service or manager, persisting those creden-
tials on the local node (e.g., persisting them to disk or writing
them to another type of persistent memory), and assuming the
role of master for its replica group, as in 3110. The method
may also include the master replica servicing write operations
that are directed to the replica group, which may include
attempting to obtain a write quorum for each of the write
operations, as in 3120. As described herein, in some embodi-
ments, the master replica may implement a heart-beat mecha-
nism in which messages are exchanged between the master
replica and the external service/manager in order to maintain
the mastership of the given replica and to ensure that only one
replica acts in the role of master replica for the replica group
at a time. In such embodiments, the heart-beat between the
given replica and the external service/manager may fail, as in
3130. For example, the external manager/service (or the com-
puting node or nodes on which it is hosted) may {fail, or
communication between the master replica and the external
service/manager may fail, causing the heart-beat (or the
response thereto) to be lost. However, the master may con-
tinue servicing write operations that are directed to the replica
group (which may host a particular data partition), which may
include attempting to obtain a write quorum for each of the

US 9,367,252 B2

67

write operations, as in 3140. As in the previous example, write
operations for which the write quorum is achieved may be
committed in the data store (not shown).

As illustrated in this example, if another replica assumes
the role of master replica for the replica group or is deter-
mined to be attempting to assume the role of master replica
for the replica group (shown as the positive exit from 3150),
the given replica may refrain from servicing any subsequently
requested write operations that are directed to the replica
group, as in 3160. For example, if the given replica is asked to
participate in a quorum for a new master election, or once the
given replica determines (after the fact) that another replica
has assumed mastership of the replica group through a
failover operation of which it was unaware, it may refrain
from servicing write operations directed to its replica group.
Instead, only the new master (once it has assumed the role of
master) may service any subsequent write operations that are
directed to the replica group, as in 3170. However, until
another replica assumes (or attempts to assume) the role of
master replica for the replica group, the given replica may
continue to service write operations that are directed to the
replica group, regardless of the state of the external manager/
service. This is illustrated in FIG. 31 by the feedback from the
negative exit of 3150 to 3140.

The approach described above may allow write operations
to continue even when an external lock/lease service or man-
ager is unavailable. In some embodiments, the system may
require acquiring quorum for consistent reads that will over-
lap the failover quorums without a lease, as is the case with
write operations. For example, in some embodiments, the
quorum may only be required when the external lock/lease
service or manager is unavailable. Under these circumstances
(i.e. when the external lock/lease manager is unavailable), the
performance of the system may be degraded, since consistent
reads may suddenly become much more expensive. (i.e. they
may be much slower). Such an approach may also add load to
the other replicas in the replica group, which may impact
eventually consistent read operations, as well.

In some embodiments, another approach may be utilized to
allow consistent read operations to continue when an external
lock/lease service or manager is unavailable without going
into a significantly degraded mode. For example, the system
may utilize a local lease mechanism (i.e. the lease mechanism
may be implemented in the replication group itself) for this
purpose. In some embodiments, the system may implement a
heart-beat mechanism between the current master replica and
the other replicas in the replica group (i.e. the slave replicas)
that is used to ensure that all replicas have the latest informa-
tion (e.g., that nothing has been missed). In some embodi-
ments, this heart-beat mechanism may be implemented using
LSNs (replicated writes) issued by the current master, and the
heart-beat messages may also to be used as the lease mecha-
nism for consistent read operations. Because they are
expressed as replicated writes, the heart-beat messages may
only succeed in obtaining the write quorum (and taking
effect) if no other master has emerged (as with any other
replicated writes). The heart-beat messages may include an
indication of the lease and/or an indication of a lease period
(e.g., a configurable time interval that is greater than the
heart-beat interval), such that they establish a lease for the
specified period if they are committed.

One embodiment of a method for employing a series of
local leases to determine the replica authorized to service
consistent read operations is illustrated by the flow diagram in
FIG. 32. As in previous examples, the method may include a
given replica receiving credentials from an external service or
manager, persisting those credentials on the local node (e.g.,

40

45

55

68

persisting them to disk or writing them to another type of
persistent memory), and assuming the role of master for its
replica group, as in3210. As illustrated in FIG. 32, the method
may include the master replica sending a replicated write that
indicates a lease to the rest of the replica group, and attempt-
ing to obtain a write quorum for that write operation, as in
3220. In this example, the lease may represent the authoriza-
tion of a replica to act as the master replica for its replica
group for a pre-determined amount of time (the lease period).
The lease message may also include an identifier of the rep-
lica that mastered the message and/or any of the other infor-
mation typically included in replicated writes in the system. If
the write operation indicating the lease achieves a write quo-
rum (shown as the positive exit from 3230), the method may
include the master replica servicing consistent read opera-
tions that are directed to the replica group (data partition), and
servicing write operations that are directed to the replica
group (data partition), committing them to the data store if a
write quorum is achieved, as in 3240.

As illustrated in this example, the method may include,
after a pre-determined time period (the heart-beat period), the
master replica sending the next lease message to the rest of
replica group as a replicated write (as in 3250). In other
words, once a given replica has been assigned credentials
(and thus, the authority to attempt to become the master
replica for its replica group) by an external service or manager
(or by other means), and the replica has become the master
replica for the replica group, that master replica may imple-
ment a lease locally (within the replica group), rather than
relying on an external service or manager to maintain its
authority to service consistent read operations directed to the
replica group (data partition), i.e. to renew the lease for an
additional lease period. For example, in some embodiments,
the leases may be originated, maintained and/or renewed
using local heart-beat messages for which the heart-beat
period is less than the lease period. As illustrated in this
example, if the write operation indicating the lease (heart-
beat message) achieves a write quorum within the lease
period (shown as the positive exit from 3260), the method
may include repeating the operations illustrated as 3240-3260
until a subsequent attempt to renew the lease fails (e.g., until
a subsequent write operation indicating a lease fails to
achieve the write quorum within the current lease period).

If one of the write operations indicating the lease (e.g., an
origination or renewal of the lease) does not achieve a write
quorum (shown as the negative exit from 3230 or the negative
exit from 3260), the method may include the master refrain-
ing from servicing subsequent consistent read operations that
are directed to the replica group, as in 3270. However, the
master replica may not refrain from performing subsequent
write operations in response to a failure to achieve a write
quorum for a lease. Instead, the master may refrain from
performing write operations only when (and if) it becomes
aware of another replica’s attempt to become a new master
replica for the group (regardless of whether that attempt has
successfully completed). As illustrated in this example, fol-
lowing a failure to renew a least within the current lease
period, the master replica may generate a new lease (assum-
ing no other replica has assumed the role of master replica for
the replica group). This is illustrated in FIG. 32 as the path
from 3270 back to 3220. Note that in some embodiments, if a
write quorum for a lease renewal is not reached during a
current lease period, but is reached shortly afterward (e.g.,
before another replica has had a chance to assume the role of
master replica for the group or to attempt to assume the role of
master replica), the master replica may resume servicing con-

US 9,367,252 B2

69

sistent reads that are directed to the replica group without
having to initiate another write operation indicating a new
lease or a new lease renewal.

In some embodiments, a local lease mechanism may also
be utilized to maintain the master replica for consistent read
operations when mastership of a replica group changes. One
embodiment of a method for determining the replica autho-
rized to service consistent read operations when mastership
of'areplica group changes is illustrated by the flow diagram in
FIG. 33. As illustrated in this example, the method may
include a given replica receiving credentials from an external
service or manager, persisting those credentials on the local
node (e.g., persisting them to disk or writing them to another
type of persistent memory), and assuming the role of master
for its replica group, as in 3310. The method may include the
master replica sending a message indicating a lease (e.g., the
origination of a new lease or the renewal of an existing lease)
to the rest of the replica group as a replicated write operation,
and attempting to obtain a write quorum for that write opera-
tion, as in 3320. As described herein, the lease may in some
embodiments represent the authorization of the replica to act
as the master replica for its replica group for a pre-determined
amount of time (the lease period). If the write quorum is
achieved (shown as the positive exit from 3330), the method
may include the master replica servicing consistent read
operations that are directed to the replica group (or a corre-
sponding data partition for which it stores data), and servicing
write operations that are directed to the replica group (data
partition), committing them to the data store if a write quorum
is achieved, as in 3340. If the write quorum is not achieved
within the lease period (shown as the negative exit from
3330), the given replica may refrain from servicing subse-
quent consistent read operations that are directed to the rep-
lica group (data partition), as in 3380. In this case, the master
replica may still service write operations, which may use a
quorum mechanism to determine whether they should be
committed.

In some embodiments, until another replica assumes the
role of master replica for the replica group (or determines that
another replica is attempting to assume the role of master
replica), the current master replica may continue to service
consistent read operations and/or write operations that are
directed to the replica group (data partition), regardless of the
state of the external service/manager. This is illustrated in
FIG. 33 by the feedback from the negative exit of 3350 to
3340. As described herein, this may include generating and
sending additional local lease messages to the other replicas
in the replica group until and unless another replica assumes
(or is determined to be attempting to assume) the role of
master replica for the replica group. As illustrated in FIG. 33,
if another replica assumes (or is attempting to assume) the
role of master replica for the replica group (shown as the
positive exit from 3350), and the most recent lease generated
by the given replica has expired (shown as the positive exit
from 3360), the method may include the given replica refrain-
ing from servicing subsequent consistent read operations that
are directed to the replica group (data partition), as in 3380.
On the other hand, if another replica assumes (or is attempting
to assume) the role of master replica for the replica group
(shown as the positive exit from 3350), but the most recent
lease generated by the given replica has not expired (shown as
the negative exit from 3360), the method may include the
given replica continuing to service consistent read operations
that are directed to the replica group (data partition) until the
lease expires, as in 3370. This is illustrated in FIG. 32 by the
feedback from the negative exit 0of 3360 to 3370, and the path
from 3370 back to 3360. In other words, in some embodi-

20

40

45

70

ments, a new master replica that has built a quorum may not
take over the responsibility of mastering consistent read
operations until an active local lease has expired.

Note that in some embodiments, the master replica may
start its lease timer immediately upon issuing the lease mes-
sage (e.g., before sending it out to the other members of the
replica group for quorum), and may not use the lease (i.e. may
not master any consistent read operations) until it has
received sufficient acknowledgements indicating that the
write of the lease message has reached quorum (which may
represent the point at which the write may be committed).
Each replica receiving the lease message may independently
note the current time (e.g., as indicated by their local clock)
when they process the heart-beat (lease) write operation. Any
heart-beat (lease) write operation that achieves quorum may
be guaranteed to be found by the failover quorum during a
failover steady state view change. As noted above, in some
embodiments, the new master having achieved the failover
quorum may allow any found lease (i.e. the latest heart-beat
processed) to expire prior to taking over the role of master
replica for the replica group. At that time, the new master
replica may be certain that any previous master will not be
using that lease, and that any newer lease that was not found
did not reach the write quorum (thus, a previous master could
not be using it either). In some embodiments, the approach
described above may ensure that two replicas cannot be act-
ing as master replica for a replica group at the same time. Note
that in some embodiments, if a previous master (i.e. the issuer
of'a currently active lease) participates in the failover quorum
that establishes a new master, it may not honor the lease it had
previously issued (e.g., it may give up or cancel the lease prior
to the expiration of the lease period). In such embodiments,
the new master may not need to wait for the lease period to
expire before assuming the role of master replica for the
replica group.

Another embodiment of a method for determining the rep-
lica authorized to service consistent read operations when
mastership of a replica group changes is illustrated by the
flow diagram in FIG. 34. As illustrated in this example, the
method may include a given replica receiving credentials
from an external service or manager, persisting those creden-
tials on the local node (e.g., persisting them to disk or writing
them to another type of persistent memory), and assuming the
role of master for its replica group, as in 3410. The method
may include the master replica sending a message indicating
a lease (e.g., the origination of a new lease or the renewal of
an existing lease) to the rest of the replica group as a replicated
write operation, and obtaining a write quorum for that write
operation, as in 3420. As described herein, the lease may in
some embodiments represent the authorization of the replica
to act as the master replica for its replica group for a pre-
determined amount of time (the lease period). As illustrated in
this example, the method may include the master replica
servicing consistent read operations that are directed to the
replica group (or a corresponding data partition for which it
stores data), and servicing write operations that are directed to
the replica group (data partition), committing them to the data
store if a write quorum is achieved, as in 3430. The method
may also include another replica attempting to assume mas-
tership of the replica group, and obtaining a quorum that
supports its attempt to become master of the replica group, as
in 3440. As illustrated in this example, the method may
include the other replica (i.e. the replica that is in the process
of'assuming mastership) sending a message indicating a sec-
ond lease (e.g., the origination of a new lease for the replica

US 9,367,252 B2

71

that is assuming mastership) to the rest of the replica group as
areplicated write operation, and obtaining a write quorum for
that message, as in 3450.

As illustrated in FIG. 34, the method may include deter-
mining whether the previous lease, i.e. the most recent lease
generated by the given replica (the current master), has
expired, as in 3460. If not, shown as the negative exit from
3460, the method may include the given replica continuing to
service any subsequent consistent read operations that are
directed to the replica group (data partition), as in 3465, until
the previous lease expires. This is illustrated in FIG. 34 by the
feedback from the negative exit of 3460 to 3465, and the path
from 3465 back to 3460. If the previous lease has expired (or
once it subsequently expires), shown as the positive exit from
3460, the method may include the given replica refraining
from servicing any subsequent consistent read operations that
are directed to the replica group (data partition), as in 3470,
and the other replica (the replica that is assuming the role of
master for the replica group) beginning to service any con-
sistent read operations under the authority ofthe second lease,
as in 3480.

Note that in some embodiments, timing may only be mea-
sured by the local clock(s) on each computing node. In such
embodiments, the techniques described herein may not
depend on clock skew across servers. Instead, they may only
depend on the local clocks of individual servers running at the
same rate. This may also be a base requirement necessary for
an external lock/lease service or manager to function prop-
erly.

In some embodiments, the techniques described herein for
managing mastership of write operations and consistent read
operations without relying on an external lock/lease service
or manager may depend on quorum and persistence facilities
already built into the system. In some embodiments, a con-
sensus mechanism may still be required for enacting a steady
state view change, and for determining the new master cre-
dentials. However, in some embodiments, the consensus
mechanisms described herein may be replaced with other
consensus mechanisms (perhaps within the replica group
itself), which may eliminate the dependency on an external
lock/lease service or manager entirely.

One computing node that may be suitable for implemen-
tation of a data storage service that employs the techniques
described herein is illustrated in FIG. 35. Computing node
3500 may include functionality to provide any or all of the
components of a system that implements such a data storage
service, or multiple computing nodes similar to or different
from computing node 3500 may collectively provide this
functionality, in different embodiments. For example, in vari-
ous embodiments, one or more computing nodes 3500 may
implement any number of storage service clients 110, a front
end module 140, any number of auto admin instances 150,
any number of storage devices (such as storage node
instances 160), and/or any other components of a Web ser-
vices platform 130, an auto admin cluster, or external
resources that interact with Web services platform 130 (such
as external workflow component 170 or external storage ser-
vice 180). Any number of those storage node instances 160
may each host one or more replicas of various data partitions
and/or metadata associated therewith. For example, any given
storage node instance 160 may host a replica acting as master
replicas for its replica group and/or a replica acting as a slave
replica in its replica group. In various embodiments, any or all
of the techniques described herein for partitioning, replica-
tion, and/or management thereof may be performed by one or
more components of the storage node instances 160 that host
a master replica and/or a slave replica, such as partition man-

30

40

45

72

ager 270 and replication and failover component 275 illus-
trated in FIG. 2C. In some embodiments that include multiple
computing nodes 3500, all of the computing nodes 3500 may
include the same or similar hardware components, software
components, and functionality, while in other embodiments,
the computing nodes 3500 comprising a computing system
configured to implement the functionality described herein
may include a wide variety of hardware components, soft-
ware components, and functionality. In some embodiments,
multiple computing nodes 3500 that collectively implement a
data storage service may be components of a larger shared
resource system or grid computing system.

In the illustrated embodiment, computing node 3500
includes one or more processors 3510 coupled to a system
memory 3520 via an input/output (1/0) interface 3530. Com-
puting node 3500 further includes a network interface 3540
coupled to I/O interface 3530, and one or more input/output
devices 3550. As noted above, in some embodiments, a given
node may implement the functionality of more than one com-
ponent of a system that manages and maintains data in tables
(e.g., in a non-relational database) on behalf of data storage
service clients, such as that described herein. In various
embodiments, a computing node 3500 may be a uniprocessor
system including one processor 3510, or a multiprocessor
system including several processors 3510 (e.g., two, four,
eight, or another suitable number). Processors 3510 may be
any suitable processor capable of executing instructions. For
example, in various embodiments processors 3510 may be
general-purpose or embedded processors implementing any
of'a variety of instruction set architectures (ISAs), such as the
x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable
ISA. In multiprocessor systems, each of processors 3510 may
commonly, but not necessarily, implement the same ISA.
Similarly, in a distributed computing system such as one that
collectively implements a data storage service, each of the
computing nodes may implement the same ISA, or individual
computing nodes and/or replica groups of nodes may imple-
ment different ISAs.

In some embodiments, system memory 3520 may include
a non-transitory, computer-readable storage medium config-
ured to store program instructions and/or data accessible by
processor(s) 3510. In various embodiments, system memory
3520 may be implemented using any suitable memory tech-
nology, such as static random access memory (SRAM), syn-
chronous dynamic RAM (SDRAM), nonvolatile/Flash-type
memory, or any other type of memory. In the illustrated
embodiment, program instructions and data implementing
desired functions, such as those described above, are shown
stored within system memory 3520 as program instructions
3525 and data storage 3535, respectively. For example, pro-
gram instruction 3525 may include program instructions that
when executed on processor(s) 3510 implement any or all of
a storage service client 110, a front end module 140 (which
may include a user interface), an auto admin instance 150, a
storage node instance 160, an admin console 265, a request
router, a staging host, one or more metadata tables, an exter-
nal workflow component 170, an external storage service
180, and/or any other components, modules, or sub-modules
of a system that provides the data storage service described
herein. Program instructions 3525 may also include program
instructions configured to implement additional functionality
of a system that implements a data storage service not
described herein.

Data storage 3535 may in various embodiments include
collections of data maintained by a data storage service on
behalf of its clients/users, and/or metadata used by a comput-
ing system that implements such a service, as described

US 9,367,252 B2

73

herein (including, but not limited to, tables managed and
maintained on behalf of clients/users of the service, metadata
tables, business rules, partition maps, routing tables, indexes,
namespaces and/or partitions thereof, service level agreement
parameter values, subscriber preferences and/or account
information, performance data, and/or resource usage data).
In other embodiments, program instructions and/or data as
described herein for implementing a data storage service that
employs the techniques described above may be received,
sent or stored upon different types of computer-readable
media or on similar media separate from system memory
3520 or computing node 3500. Generally speaking, a com-
puter-readable medium may include storage media or
memory media such as magnetic or optical media, e.g., disk
or CD/DVD-ROM coupled to computing node 3500 via [/O
interface 3530. Program instructions and data stored on a
computer-readable storage medium may be transmitted to a
computing node 3500 for execution by a processor 3510a by
transmission media or signals such as electrical, electromag-
netic, or digital signals, which may be conveyed via a com-
munication medium such as a network and/or a wireless link,
such as may be implemented via network interface 3540.

In one embodiment, I/O interface 3530 may be configured
to coordinate 1/O traffic between processor(s) 3510, system
memory 3520, and any peripheral devices in the computing
node, including network interface 3540 or other peripheral
interfaces, such as input/output devices 3550. In some
embodiments, /O interface 3530 may perform any necessary
protocol, timing or other data transformations to convert data
signals from one component (e.g., system memory 3520) into
a format suitable for use by another component (e.g., proces-
sor 3510). In some embodiments, I/O interface 3530 may
include support for devices attached through various types of
peripheral buses, such as a variant of the Peripheral Compo-
nent Interconnect (PCI) bus standard or the Universal Serial
Bus (USB) standard, for example. In some embodiments, the
function of I/O interface 3530 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. Also, in some embodiments some or all
of'the functionality of I/O interface 3530, such as an interface
to system memory 3520, may be incorporated directly into
processor 3510.

Network interface 3540 may be configured to allow data to
be exchanged between computing node 3500 and other
devices attached to a network (such as other computer sys-
tems, communication devices, input/output devices, or exter-
nal storage devices), or between other nodes in a system
providing shared computing services. In various embodi-
ments, network interface 3540 may support communication
via wired or wireless general data networks, such as any
suitable type of Ethernet network, for example; via telecom-
munications/telephony networks such as analog voice net-
works or digital fiber communications networks; via storage
area networks such as Fibre Channel SANs, or via any other
suitable type of network and/or protocol.

Input/output devices 3550 may, in some embodiments,
include one or more display terminals, keyboards, keypads,
touchpads, scanning devices, voice or optical recognition
devices, or any other devices suitable for entering or retriev-
ing data by one or more computing nodes 3500. Multiple
input/output devices 3550 may be present in computing node
3500 or may be distributed on various computing nodes of a
system that is configured to implement a data storage service.
In some embodiments, similar input/output devices may be
separate from computing node 3500 and may interact with
one or more computing nodes of a system through a wired or
wireless connection, such as over network interface 3540.

20

25

30

40

45

50

55

74

Storage service clients (e.g., users, subscribers and/or cli-
ent applications) may interact with a data storage service such
as that described herein in various ways in different embodi-
ments, such as to submit requests for service (including, but
not limited to, requests to store, retrieve and/or update items
in tables, or requests to reparation a table), and to receive
results. For example, some subscribers to the service may
have physical access to computing node 3500, and if so, may
interact with various input/output devices 3550 to provide
and/or receive information. Alternatively, other clients/users
may use client computing systems to access the system, such
as remotely via network interface 3540 (e.g., via the Internet
and/or the World Wide Web). In addition, some or all of the
computing nodes of a system providing the service may pro-
vide various feedback or other general types of information to
clients/users (e.g., in response to user requests) via one or
more input/output devices 3550.

Those skilled in the art will appreciate that computing node
3500 is merely illustrative and is not intended to limit the
scope of embodiments. In particular, the computing system
and devices may include any combination of hardware or
software that can perform the indicated functions, including
computers, network devices, internet appliances, PDAs,
wireless phones, pagers, etc. Computing node 3500 may also
be connected to other devices that are not illustrated, in some
embodiments. In addition, the functionality provided by the
illustrated components may in some embodiments be com-
bined in fewer components or distributed in additional com-
ponents. Similarly, in some embodiments the functionality of
some of the illustrated components may not be provided
and/or other additional functionality may be available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computing system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored (e.g., as instruc-
tions or structured data) on a computer-readable storage
medium or a portable article to be read by an appropriate
drive, various examples of which are described above. In
some embodiments, instructions stored on a computer-read-
able storage medium separate from computing node 3500
may be transmitted to computing node 3500 via transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as a
network and/or a wireless link. Various embodiments may
further include receiving, sending or storing instructions and/
or data implemented in accordance with the foregoing
description upon a computer-readable storage medium.
Accordingly, different embodiments may be practiced with
other computer system configurations.

Note that while several examples described herein are
directed to the application of various techniques in systems
that include a non-relational database, in other embodiments
these techniques may be applied in systems in which the
non-relational data store is implemented using a different
storage paradigm.

Those skilled in the art will appreciate that in some
embodiments the functionality provided by the methods dis-
cussed above may be provided in alternative ways, such as
being split among more software modules or routines or
consolidated into fewer modules or routines. Similarly, in
some embodiments illustrated methods may provide more or

US 9,367,252 B2

75

less functionality than is described, such as when other illus-
trated methods instead lack or include such functionality
respectively, or when the amount of functionality that is pro-
vided is altered. In addition, while various operations may be
illustrated as being performed in a particular manner (e.g., in
serial or in parallel) and/or in a particular order, those skilled
in the art will appreciate that in other embodiments the opera-
tions may be performed in other orders and in other manners.
Those skilled in the art will also appreciate that the data
structures discussed above may be structured in different
manners, such as by having a single data structure split into
multiple data structures or by having multiple data structures
consolidated into a single data structure. Similarly, in some
embodiments illustrated data structures may store more or
less information than is described, such as when other illus-
trated data structures instead lack or include such information
respectively, or when the amount or types of information that
is stored is altered. The various methods as depicted in the
figures and described herein represent illustrative embodi-
ments of methods. The methods may be implemented in
software, in hardware, or in a combination thereof in various
embodiments. Similarly, the order of any method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc., in various embodiments.
From the foregoing it will be appreciated that, although
specific embodiments have been described herein for pur-
poses of illustration, various modifications may be made
without deviating from the spirit and scope of the appended
claims and the elements recited therein. In addition, while
certain aspects are presented below in certain claim forms, the
inventors contemplate the various aspects in any available
claim form. For example, while only some aspects may cur-
rently be recited as being embodied in a computer readable
storage medium, other aspects may likewise be so embodied.
Various modifications and changes may be made as would be
obvious to a person skilled in the art having the benefit of this
disclosure. It is intended to embrace all such modifications
and changes and, accordingly, the above description to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A system, comprising:

a plurality of computing nodes, each comprising at least
one processor and memory, wherein the plurality of
computing nodes is configured to implement a data stor-
age service;

wherein the data storage service maintains data on behalf
of one or more storage service clients, wherein main-
taining the data comprises storing two or more replicas
of the data on two or more respective computing nodes
of the plurality of computing nodes, wherein the two or
more replicas make up a replica group, wherein the
replica group maintains an indicator of its membership
version, wherein the membership version is updated
each time the membership of the replica group changes;

wherein at least one of the two or more replicas is config-
ured to attempt to assume a role to coordinate writes or
consistent reads for the replica group, wherein to attempt
to assume the role a given one of the two or more replicas
is configured to:
acquire a lock associated with the replica group;
gather state information from at least some of the two or

more replicas;
for each of the at least some of the two or more replicas:
determine, dependent on the state information,
whether the replica supports the attempt of the
given one of the replicas to assume the role; and

5

15

25

40

45

50

55

60

76

in response to determining that the replica supports
the attempt of the given one of the replicas to
assume the role, including the replica in a quorum
of the two or more replicas;
determine whether at least a pre-determined number of
replicas support the attempt of the given one of the
replicas to assume the role and are included in the
quorum; and
assume the role to coordinate writes or consistent reads
for the two or more replicas in response to determin-
ing that at least the pre-determined number of replicas
support the attempt of the given one of the replicas to
assume the role and are included in the quorum.
2. The system of claim 1, wherein to determine whether the
replica supports an attempt to assume the role comprises:
determine whether the replica has observed a more recent
membership version for the replicas storing the data than
amost recent membership version observed by the given
one of the replicas attempting to assume the role,
wherein the membership version is incremented each
time a membership change is made in the replica group;

determine whether the replica is no longer hosted on the
computing node from which the state information for the
replica is gathered; or

determine whether the replica has seen a more recent value

forthe lock than a most recent lock value observed by the
given one of the replicas attempting to assume the role,
wherein the lock value is incremented each time the lock
is acquired by a different replica.

3. The system of claim 1, wherein the given one of the
replicas is further configured to abandon the attempt to
assume the role for the replica group in response to determin-
ing that fewer than the pre-determined number of replicas are
included in the quorum.

4. The system of claim 1, wherein the given one of the
replicas is further configured to, prior to assuming the role for
the replica group:

determine whether one of the replicas added to the quorum

stores data or metadata that was more recently updated
than data or metadata stored by the given one of the
replicas; and

in response to determining that a replica added to the quo-

rum stores data or metadata that was more recently
updated than data or metadata stored by the given one of
the replicas, attempt to synchronize the data or metadata
stored by the given one of the replicas with the more
recently updated data or metadata stored by the replica
added to the quorum.

5. The system of claim 4, wherein the given one of the
replicas is further configured to, prior to assuming the role for
the replica group:

in response to successfully synchronizing the data or meta-

data with the replica having the more recently updated

data or metadata:

propagate the more recently updated data or metadata to
one or more other replicas in the replica group;

propagate metadata indicating an impending change of
role for the replica group to the other replicas of the
replica group;

determine whether the propagation of the metadata indi-
cating an impending change of role meets a pre-de-
termined durability requirement in the replica group;
and

in response to determining that the propagation of the
metadata indicating an impending change of role
meets the pre-determined durability requirement in

US 9,367,252 B2

77

the replica group, commit the more recently updated
data or metadata in the system.

6. A method, comprising:

performing, by one or more computers:

a given one of two or more replicas that make up a
replica group attempting to assume a role to coordi-
nate writes or consistent reads for the replica group,
wherein the replica group maintains an indicator of its
membership version, wherein the membership ver-
sion is updated each time the membership of the rep-
lica group changes, wherein the two or more replicas
store data on respective computing nodes of a plural-
ity of computing nodes that collectively implement a
data store;

wherein attempting to assume the role comprises:
indicating an intention to assume the role;
receiving credentials authorizing the attempt to

assume the role;
gathering state information from at least some of the
two or more replicas;
for each of the at least some of the two or more
replicas:
determining, dependent on the state information,
whether the replica supports the attempt to
assume the role, wherein said determining is fur-
ther dependent on the received credentials; and
in response to determining that the replica supports
the attempt to assume the role, including the
replica in a quorum; and

the given one of the replicas assuming the role for the
replica group in response to determining that at least a
pre-determined number of replicas support the
attempt of the one of the replicas to assume the role
and are included in the quorum.

7. The method of claim 6, wherein determining whether the
replica supports an attempt to assume the role comprises one
or more of:

determining whether the replica has observed a more

recent membership version for the replicas storing the
data than a most recent membership version observed by
the given one of the replicas attempting to assume the
role, wherein the membership version is incremented
each time a membership change is made in the replica
group;

determining whether the replica is no longer hosted on the

computing node from which the state information for the

replica is gathered; or

determining whether the replica has seen a more recent

value for a lock associated with the replica group than a
most recent lock value observed by the given one of the
replicas attempting to assume the role, wherein the most
recent lock value observed by the given one of the rep-
licas attempting to assume the role is included in the
received credentials.

8. The method of claim 6, wherein said attempting to
assume the role the replica group is performed in response to
a failure of a replica currently holding the role, a failure of a
computing node on which a replica currently holding the role
is hosted, a communication failure between a replica cur-
rently holding the role and one or more other components of
the data store, or a membership change in the replica group.

9. The method of claim 6,

wherein the data store stores data in a plurality of tables;

wherein, for each table, the data store maintains a plurality

ofreplicas of table data in each of one or more partitions
of the table on respective computing nodes;

15

20

25

30

35

40

45

55

65

78

wherein said maintaining the data comprises maintaining
two or more replicas of the data stored in a given parti-
tion of a table on respective computing nodes;

wherein said indicating an intention to assume the role

comprises expressing an interest in acquiring a lock
associated with the replica group; and

wherein the lock associated with the replica group is iden-

tified by an identifier of the given partition.

10. The method of claim 6,

wherein said indicating an intention to assume the role

comprises expressing an interest in acquiring a lock
associated with the replica group to an external lock
service or lock manager;

wherein the credentials are received from the external lock

service or lock manager;

wherein the method further comprises acquiring the lock

associated with the replica group; and

wherein only one of the two or more replicas can hold the

lock at a time.

11. The method of claim 6, wherein said gathering com-
prises gathering state information until: the pre-determined
number of replicas has been added to the quorum, state infor-
mation has been gathered from all of the two or more replicas,
it is determined that there are not enough replicas supporting
the attempt to be able to add the pre-determined number of
replicas to the quorum, or a pre-determined time limit is
reached.

12. The method of claim 6, further comprising, subsequent
to the given one of the replicas assuming the role for the
replica group:

another replica attempting to assume the role for the replica

group; and

the other replica abandoning its attempt to assume the role

for the replica group in response to determining that
fewer than the pre-determined number of replicas are
included in its quorum.

13. The method of claim 6, further comprising, prior to the
given one of the replicas assuming the role for the replica
group:

the given one of the replicas determining whether one of

the replicas added to the quorum stores data or metadata
that was more recently updated than data or metadata
stored by the given one of the replicas; and

in response to determining that a replica of the replicas

added to the quorum stores data or metadata that was
more recently updated than data or metadata stored by
the given one of the replicas, the given one of the replicas
attempting to synchronize the data or metadata stored by
the given one of the replicas with the more recently
updated data or metadata stored by the replica added to
the quorum.

14. The method of claim 13, further comprising, prior to the
given one of the replicas assuming the role for the replica
group:

in response to successfully synchronizing the data or meta-

data stored by the given one of the replicas with the more
recently updated data or metadata stored by the given
replica added to the quorum, the given one of the replicas
propagating the more recently updated data or metadata
to one or more other replicas in the replica group.

15. The method of claim 14, further comprising, prior to the
given one of the replicas assuming the role for the replica
group, the given one of the replicas:

propagating metadata indicating an impending change of

role for the replica group to the other replicas of the
replica group;

US 9,367,252 B2

79

determining whether the propagation of the metadata indi-
cating an impending change of role meets a pre-deter-
mined durability requirement in the replica group; and

in response to determining that the propagation of the
metadata indicating an impending change of role meets
the pre-determined durability requirement in the replica
group, committing the more recently updated data or
metadata in the data store.

16. A non-transitory, computer-readable storage medium
storing program instructions that when executed on one or
more computers cause the one or more computers to perform:

maintaining data in a distributed data store, wherein main-
taining the data comprises maintaining two or more
replicas of the data stored on respective computing
nodes, wherein the two or more replicas make up a
replica group, wherein the replica group maintains an
indicator of its membership version, wherein the mem-
bership version is updated each time the membership of
the replica group changes;

a given one of the two or more replicas attempting to
assume a role to coordinate write or consistent reads for
the replica group, wherein said attempting to assume the
role comprises:
gathering state information from at least some ofthe two

or more replicas;

for each of the at least some of the two or more replicas:

determining, dependent on the state information,
whether the replica supports the attempt to assume
the role; and

in response to determining that the replica supports
the attempt to assume the role, including the replica
in a quorum;

in response to determining that at least a pre-determined

number of replicas support the attempt of the given

one of the replicas to assume the role and are included

in the quorum, the given one of the replicas:

propagating metadata indicating an impending
change of role for the replica group to the other
replicas of the replica group;

determining whether the propagation of the metadata
indicating an impending change of role meets a
pre-determined durability requirement in the rep-
lica group; and

in response to determining that the propagation of the
metadata indicating an impending change of role
meets the pre-determined durability requirement in
the replica group, assuming the role for the replica
group.

17. The non-transitory, computer-readable storage
medium of claim 16, wherein said determining whether the
replica supports an attempt to assume the role comprises one
or more of:

determining whether the replica has observed a more
recent membership version for the replicas storing the
data than a most recent membership version observed by

15

20

25

40

45

80

the given one of the replicas attempting to assume the
role, wherein the membership version is incremented
each time a membership change is made in the replica
group;

determining whether the replica is no longer hosted on the

computing node from which the state information for the
replica is gathered; or

determining whether the replica has seen a more recent

value for a lock associated with the replica group than a
most recent lock value observed by the given one of the
replicas attempting to assume the role, wherein the most
recent lock value observed by the given one of the rep-
licas attempting to assume the role is included in the
received credentials.

18. The non-transitory, computer-readable storage
medium of claim 16, wherein when executed on the one or
more computers the program instruction further cause the one
or more computers to perform, subsequent to the given one of
the replicas assuming the role for the replica group:

another replica attempting to assume the role for the replica

group; and

the other replica abandoning its attempt to assume the role

for the replica group in response to determining that
fewer than the pre-determined number of replicas are
included in its quorum.

19. The non-transitory, computer-readable storage
medium of claim 15, wherein when executed on the one or
more computers the program instruction further cause the one
or more computers to perform, prior to the given one of the
replicas assuming the role for the replica group:

the given one of the replicas determining whether one of

the replicas added to the quorum stores data or metadata
that was more recently updated than data or metadata
stored by the given one of the replicas; and

in response to determining that a replica of the replicas

added to the quorum stores data or metadata that was
more recently updated than data or metadata stored by
the given one of the replicas, the given one of the replicas
attempting to synchronize the data or metadata stored by
the given one of the replicas with the more recently
updated data or metadata stored by the replica added to
the quorum.

20. The non-transitory, computer-readable storage
medium of claim 19, wherein when executed on the one or
more computers the program instruction further cause the one
or more computers to perform, prior to the given one of the
replicas assuming the role for the replica group:

in response to successfully synchronizing the data or meta-

data stored by the given one of the replicas with the more
recently updated data or metadata stored by the replica
added to the quorum, the given one of the replicas propa-
gating the more recently updated data or metadata to one
or more other replicas in the replica group.

#* #* #* #* #*

